RESPA: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
Carl McBride (talk | contribs) m (Slight tidy) |
||
Line 1: | Line 1: | ||
'''RESPA''' (reversible reference system propagator algorithm) <ref>[http://dx.doi.org/10.1063/1.460004 Mark E. Tuckerman, Bruce J. Berne, and Angelo Rossi "Molecular dynamics algorithm for multiple time scales: Systems with disparate masses" J. Chem. Phys. '''94''' 1465 (1990)]</ref> | |||
[[time step]] method. | <ref>[http://dx.doi.org/10.1063/1.463137 M. Tuckerman, B. J. Berne and G. J. Martyna "Reversible multiple time scale molecular dynamics", Journal of Chemical Physics '''97''' pp. 1990-2001 (1992)]</ref> is multiple | ||
[[time step]] method for [[molecular dynamics]] simulations. | |||
== References == | == References == | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1063/1.472005 Steven J. Stuart, Ruhong Zhou, and B. J. Berne "Molecular dynamics with multiple time scales: The selection of efficient reference system propagators" Stuart, S., Zhou, R., and Berne, B., J. Chem. Phys. '''105''' 1426 (1996)] | *[http://dx.doi.org/10.1063/1.472005 Steven J. Stuart, Ruhong Zhou, and B. J. Berne "Molecular dynamics with multiple time scales: The selection of efficient reference system propagators" Stuart, S., Zhou, R., and Berne, B., J. Chem. Phys. '''105''' 1426 (1996)] | ||
*[http://dx.doi.org/10.1063/1.471067 Piero Procacci and Massimo Marchi "Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm" Procacci, P., and Marchi, M., J. Chem. Phys. '''104''' 3003 (1996)] | *[http://dx.doi.org/10.1063/1.471067 Piero Procacci and Massimo Marchi "Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm" Procacci, P., and Marchi, M., J. Chem. Phys. '''104''' 3003 (1996)] | ||
[[category:molecular dynamics]] | [[category:molecular dynamics]] |
Latest revision as of 15:26, 27 July 2010
RESPA (reversible reference system propagator algorithm) [1] [2] is multiple time step method for molecular dynamics simulations.
References[edit]
- ↑ Mark E. Tuckerman, Bruce J. Berne, and Angelo Rossi "Molecular dynamics algorithm for multiple time scales: Systems with disparate masses" J. Chem. Phys. 94 1465 (1990)
- ↑ M. Tuckerman, B. J. Berne and G. J. Martyna "Reversible multiple time scale molecular dynamics", Journal of Chemical Physics 97 pp. 1990-2001 (1992)
Related reading
- Steven J. Stuart, Ruhong Zhou, and B. J. Berne "Molecular dynamics with multiple time scales: The selection of efficient reference system propagators" Stuart, S., Zhou, R., and Berne, B., J. Chem. Phys. 105 1426 (1996)
- Piero Procacci and Massimo Marchi "Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm" Procacci, P., and Marchi, M., J. Chem. Phys. 104 3003 (1996)