Bridgman thermodynamic formulas: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) (tmp save) |
Carl McBride (talk | contribs) m (→References: Added a related paper by Cooper and Russell) |
||
(14 intermediate revisions by the same user not shown) | |||
Line 13: | Line 13: | ||
</div> | </div> | ||
'''Bridgman thermodynamic formulas''' <ref>[http://dx.doi.org/10.1103/PhysRev.3.273 P. W. Bridgman "A Complete Collection of Thermodynamic Formulas", Physical Review '''3''' pp. 273-281 (1914)]</ref> | '''Bridgman thermodynamic formulas''' <ref>[http://dx.doi.org/10.1103/PhysRev.3.273 P. W. Bridgman "A Complete Collection of Thermodynamic Formulas", Physical Review '''3''' pp. 273-281 (1914)]</ref> | ||
==Table II== | |||
====pressure==== | |||
:<math> \left. \partial T \right\vert_p = - \left. \partial p \right\vert_T = 1 </math> | |||
:<math> \left. \partial V \right\vert_p = - \left. \partial p \right\vert_V = \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial S \right\vert_p = - \left. \partial p \right\vert_S = C_p/T </math> | |||
:<math> \left. \partial Q \right\vert_p = - \left. \partial p \right\vert_Q = C_p </math> | |||
:<math> \left. \partial W \right\vert_p = - \left. \partial p \right\vert_W = p\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial U \right\vert_p = - \left. \partial p \right\vert_U = C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial H \right\vert_p = - \left. \partial p \right\vert_H = C_p </math> | |||
:<math> \left. \partial G \right\vert_p = - \left. \partial p \right\vert_G = -S </math> | |||
:<math> \left. \partial A \right\vert_p = - \left. \partial p \right\vert_A = -\left( S + p\left. \frac{\partial V}{\partial T} \right\vert_p \right)</math> | |||
====temperature==== | |||
:<math> \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
:<math> \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
:<math> \left. \partial U \right\vert_T = - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
:<math> \left. \partial H \right\vert_T = - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p </math> | |||
:<math> \left. \partial G \right\vert_T = - \left. \partial T \right\vert_G = -V </math> | |||
:<math> \left. \partial A \right\vert_T = - \left. \partial T \right\vert_A = p\left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
====volume==== | |||
:<math> \left. \partial S \right\vert_V = - \left. \partial V \right\vert_S = 1/T \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right)</math> | |||
:<math> \left. \partial Q \right\vert_V = - \left. \partial V \right\vert_Q = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p </math> | |||
:<math> \left. \partial W \right\vert_V = - \left. \partial V \right\vert_W = 0 </math> | |||
:<math> \left. \partial U \right\vert_V = - \left. \partial V \right\vert_U = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p </math> | |||
:<math> \left. \partial H \right\vert_V = - \left. \partial V \right\vert_H = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V\left. \frac{\partial V}{\partial T} \right\vert_p </math> | |||
:<math> \left. \partial G \right\vert_V = - \left. \partial V \right\vert_G = - \left( V \left. \frac{\partial V}{\partial T} \right\vert_p + S\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
:<math> \left. \partial A \right\vert_V = - \left. \partial V \right\vert_A = -S\left. \frac{\partial V}{\partial p} \right\vert_T </math> | |||
====entropy==== | |||
:<math> \left. \partial Q \right\vert_S = - \left. \partial S \right\vert_Q = 0 </math> | |||
:<math> \left. \partial W \right\vert_S = - \left. \partial S \right\vert_W = -(p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial U \right\vert_S = - \left. \partial S \right\vert_U = (p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial H \right\vert_S = - \left. \partial S \right\vert_H = -VC_p/T </math> | |||
:<math> \left. \partial G \right\vert_S = - \left. \partial S \right\vert_G = -(1/T) \left( VC_p -ST\left. \frac{\partial V}{\partial T} \right\vert_p \right) </math> | |||
:<math> \left. \partial A \right\vert_S = - \left. \partial S \right\vert_A = (1/T) \left( p\left( C_p \left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) + ST\left. \frac{\partial V}{\partial T} \right\vert_p \right) </math> | |||
====heat==== | |||
:<math> \left. \partial W \right\vert_Q = - \left. \partial Q \right\vert_W = -p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial U \right\vert_Q = - \left. \partial Q \right\vert_U = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial H \right\vert_Q = - \left. \partial Q \right\vert_H = -VC_p </math> | |||
:<math> \left. \partial G \right\vert_Q = - \left. \partial Q \right\vert_G = - \left( ST \left. \frac{\partial V}{\partial T} \right\vert_p -VC_p \right) </math> | |||
:<math> \left. \partial A \right\vert_Q = - \left. \partial Q \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) + ST \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
====work==== | |||
:<math> \left. \partial U \right\vert_W = - \left. \partial W \right\vert_U = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial H \right\vert_W = - \left. \partial W \right\vert_H = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V \left. \frac{\partial V}{\partial T} \right\vert_p \right) </math> | |||
:<math> \left. \partial G \right\vert_W = - \left. \partial W \right\vert_G = -p \left( V\left. \frac{\partial V}{\partial p} \right\vert_T + S \left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
:<math> \left. \partial A \right\vert_W = - \left. \partial W \right\vert_A = -pS \left. \frac{\partial V}{\partial p} \right\vert_T </math> | |||
====internal energy==== | |||
:<math> \left. \partial H \right\vert_U = - \left. \partial U \right\vert_H = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) - p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
:<math> \left. \partial G \right\vert_U = - \left. \partial U \right\vert_G = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math> | |||
:<math> \left. \partial A \right\vert_U = - \left. \partial U \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math> | |||
====enthalpy==== | |||
:<math> \left. \partial G \right\vert_H = - \left. \partial H \right\vert_G = -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p </math> | |||
:<math> \left. \partial A \right\vert_H = - \left. \partial H \right\vert_A = -\left(S+p \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T </math> | |||
====Gibbs energy function==== | |||
:<math> \left. \partial A \right\vert_G = - \left. \partial G \right\vert_A = -S\left(V+p \left. \frac{\partial V}{\partial p} \right\vert_T \right) - pV \left. \frac{\partial V}{\partial T} \right\vert_p </math> | |||
==See also== | |||
*[[Thermodynamic relations]] | |||
*[[Maxwell's relations]] | |||
==References== | ==References== | ||
<references/> | <references/> | ||
;Related reading | |||
*[http://arxiv.org/abs/1102.1540 James B. Cooper and T. Russell "On the Mathematics of Thermodynamics", arXiv:1102.1540v1 Tue, 8 Feb (2011)] | |||
*[http://arxiv.org/abs/1108.4760 James B. Cooper "Thermodynamical identities - a systematic approach", arXiv:1108.4760v1 Wed, 24 Aug (2011)] | |||
[[Category: Classical thermodynamics]] | [[Category: Classical thermodynamics]] |
Latest revision as of 11:02, 13 October 2011
Notation used (from Table I):
- is the pressure.
- is the temperature (in Kelvin).
- is the volume.
- is the entropy.
- is the heat.
- is the work.
- is the internal energy.
- is the enthalpy
- is the Gibbs energy function
- is the Helmholtz energy function.
Bridgman thermodynamic formulas [1]
Table II[edit]
pressure[edit]
temperature[edit]
volume[edit]
entropy[edit]
heat[edit]
work[edit]
internal energy[edit]
enthalpy[edit]
Gibbs energy function[edit]
See also[edit]
References[edit]
- Related reading