Bridgman thermodynamic formulas: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(tmp save)
 
m (→‎References: Added a related paper by Cooper and Russell)
 
(14 intermediate revisions by the same user not shown)
Line 13: Line 13:
</div>
</div>
'''Bridgman thermodynamic formulas''' <ref>[http://dx.doi.org/10.1103/PhysRev.3.273 P. W. Bridgman "A Complete Collection of Thermodynamic Formulas", Physical Review '''3''' pp. 273-281 (1914)]</ref>
'''Bridgman thermodynamic formulas''' <ref>[http://dx.doi.org/10.1103/PhysRev.3.273 P. W. Bridgman "A Complete Collection of Thermodynamic Formulas", Physical Review '''3''' pp. 273-281 (1914)]</ref>
==Table II==
====pressure====
:<math>  \left. \partial T \right\vert_p  =  - \left. \partial p \right\vert_T = 1 </math>
:<math> \left. \partial V \right\vert_p  =  - \left. \partial p \right\vert_V =  \left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math>  \left. \partial S \right\vert_p  =  - \left. \partial p \right\vert_S = C_p/T </math>
:<math>  \left. \partial Q \right\vert_p  =  - \left. \partial p \right\vert_Q = C_p </math>
:<math> \left. \partial W \right\vert_p  =  - \left. \partial p \right\vert_W =  p\left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math> \left. \partial U \right\vert_p  =  - \left. \partial p \right\vert_U = C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math>  \left. \partial H \right\vert_p  =  - \left. \partial p \right\vert_H = C_p </math>
:<math>  \left. \partial G \right\vert_p  =  - \left. \partial p \right\vert_G = -S </math>
:<math> \left. \partial A \right\vert_p  =  - \left. \partial p \right\vert_A = -\left( S + p\left. \frac{\partial V}{\partial T} \right\vert_p \right)</math>
====temperature====
:<math> \left. \partial V \right\vert_T  =  - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T</math>
:<math> \left. \partial S \right\vert_T  =  - \left. \partial T \right\vert_S =  \left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math> \left. \partial Q \right\vert_T  =  - \left. \partial T \right\vert_Q =  T\left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math> \left. \partial W \right\vert_T  =  - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
:<math> \left. \partial U \right\vert_T  =  - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
:<math> \left. \partial H \right\vert_T  =  - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p  </math>
:<math> \left. \partial G \right\vert_T  =  - \left. \partial T \right\vert_G = -V </math>
:<math> \left. \partial A \right\vert_T  =  - \left. \partial T \right\vert_A =  p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
====volume====
:<math> \left. \partial S \right\vert_V  =  - \left. \partial V \right\vert_S = 1/T  \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)</math>
:<math> \left. \partial Q \right\vert_V  =  - \left. \partial V \right\vert_Q =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  </math>
:<math> \left. \partial W \right\vert_V  =  - \left. \partial V \right\vert_W = 0 </math>
:<math> \left. \partial U \right\vert_V  =  - \left. \partial V \right\vert_U =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  </math>
:<math> \left. \partial H \right\vert_V  =  - \left. \partial V \right\vert_H =  C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  - V\left.  \frac{\partial V}{\partial T} \right\vert_p </math>
:<math> \left. \partial G \right\vert_V  =  - \left. \partial V \right\vert_G =  - \left(  V \left. \frac{\partial V}{\partial T} \right\vert_p + S\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>
:<math> \left. \partial A \right\vert_V  =  - \left. \partial V \right\vert_A =  -S\left. \frac{\partial V}{\partial p} \right\vert_T  </math>
====entropy====
:<math> \left. \partial Q \right\vert_S  =  - \left. \partial S \right\vert_Q = 0 </math>
:<math> \left. \partial W \right\vert_S  =  - \left. \partial S \right\vert_W =  -(p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)  </math>
:<math> \left. \partial U \right\vert_S  =  - \left. \partial S \right\vert_U =  (p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)  </math>
:<math> \left. \partial H \right\vert_S  =  - \left. \partial S \right\vert_H = -VC_p/T </math>
:<math> \left. \partial G \right\vert_S  =  - \left. \partial S \right\vert_G =  -(1/T) \left( VC_p -ST\left. \frac{\partial V}{\partial T} \right\vert_p  \right)  </math>
:<math> \left. \partial A \right\vert_S  =  - \left. \partial S \right\vert_A =  (1/T) \left( p\left( C_p \left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) +  ST\left. \frac{\partial V}{\partial T} \right\vert_p  \right)  </math>
====heat====
:<math> \left. \partial W \right\vert_Q  =  - \left. \partial Q \right\vert_W =  -p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)  </math>
:<math> \left. \partial U \right\vert_Q  =  - \left. \partial Q \right\vert_U =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)  </math>
:<math> \left. \partial H \right\vert_Q  =  - \left. \partial Q \right\vert_H =  -VC_p </math>
:<math> \left. \partial G \right\vert_Q  =  - \left. \partial Q \right\vert_G =  - \left( ST \left. \frac{\partial V}{\partial T} \right\vert_p -VC_p  \right)  </math>
:<math> \left. \partial A \right\vert_Q  =  - \left. \partial Q \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right)  +  ST \left. \frac{\partial V}{\partial T} \right\vert_p</math>
====work====
:<math> \left. \partial U \right\vert_W  =  - \left. \partial W \right\vert_U =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>
:<math> \left. \partial H \right\vert_W  =  - \left. \partial W \right\vert_H =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  - V \left. \frac{\partial V}{\partial T} \right\vert_p \right) </math>
:<math> \left. \partial G \right\vert_W  =  - \left. \partial W \right\vert_G =  -p \left( V\left. \frac{\partial V}{\partial p} \right\vert_T  + S \left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>
:<math> \left. \partial A \right\vert_W  =  - \left. \partial W \right\vert_A =  -pS \left. \frac{\partial V}{\partial p} \right\vert_T  </math>
====internal energy====
:<math> \left. \partial H \right\vert_U  =  - \left. \partial U \right\vert_H =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>
:<math> \left. \partial G \right\vert_U  =  - \left. \partial U \right\vert_G =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>
:<math> \left. \partial A \right\vert_U  =  - \left. \partial U \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math>
====enthalpy====
:<math> \left. \partial G \right\vert_H  =  - \left. \partial H \right\vert_G =  -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p  </math>
:<math> \left. \partial A \right\vert_H  =  - \left. \partial H \right\vert_A = -\left(S+p  \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T  \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T  </math>
====Gibbs energy function====
:<math> \left. \partial A \right\vert_G  =  - \left. \partial G \right\vert_A = -S\left(V+p  \left. \frac{\partial V}{\partial p} \right\vert_T \right)  - pV \left. \frac{\partial V}{\partial T} \right\vert_p  </math>
==See also==
*[[Thermodynamic relations]]
*[[Maxwell's relations]]
==References==
==References==
<references/>
<references/>
;Related reading
*[http://arxiv.org/abs/1102.1540 James B. Cooper and T. Russell "On the Mathematics of Thermodynamics", arXiv:1102.1540v1  Tue, 8 Feb (2011)]
*[http://arxiv.org/abs/1108.4760 James B. Cooper "Thermodynamical identities - a systematic approach", arXiv:1108.4760v1 Wed, 24 Aug (2011)]
[[Category: Classical thermodynamics]]
[[Category: Classical thermodynamics]]

Latest revision as of 11:02, 13 October 2011

Notation used (from Table I):

Bridgman thermodynamic formulas [1]

Table II[edit]

pressure[edit]

temperature[edit]

volume[edit]

entropy[edit]

heat[edit]

work[edit]

internal energy[edit]

enthalpy[edit]

Gibbs energy function[edit]

See also[edit]

References[edit]

Related reading