Bridgman thermodynamic formulas: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a related paper by Cooper and Russell)
 
(2 intermediate revisions by the same user not shown)
Line 105: Line 105:
====internal energy====
====internal energy====


:<math> \left. \partial H \right\vert_Q =  - \left. \partial Q \right\vert_H =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>
:<math> \left. \partial H \right\vert_U =  - \left. \partial U \right\vert_H =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>


:<math> \left. \partial G \right\vert_Q =  - \left. \partial Q \right\vert_G =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>
:<math> \left. \partial G \right\vert_U =  - \left. \partial U \right\vert_G =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>


:<math> \left. \partial A \right\vert_Q =  - \left. \partial Q \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math>
:<math> \left. \partial A \right\vert_U =  - \left. \partial U \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math>
 
====enthalpy====
 
:<math> \left. \partial G \right\vert_H  =  - \left. \partial H \right\vert_G =  -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p  </math>
 
:<math> \left. \partial A \right\vert_H  =  - \left. \partial H \right\vert_A = -\left(S+p  \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T  \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T  </math>


====Gibbs energy function====
====Gibbs energy function====
:<math> \left. \partial A \right\vert_G  =  - \left. \partial G \right\vert_A = -S\left(V+p  \left. \frac{\partial V}{\partial p} \right\vert_T \right)  - pV \left. \frac{\partial V}{\partial T} \right\vert_p  </math>


==See also==
==See also==
Line 118: Line 126:
==References==
==References==
<references/>
<references/>
;Related reading
*[http://arxiv.org/abs/1102.1540 James B. Cooper and T. Russell "On the Mathematics of Thermodynamics", arXiv:1102.1540v1  Tue, 8 Feb (2011)]
*[http://arxiv.org/abs/1108.4760 James B. Cooper "Thermodynamical identities - a systematic approach", arXiv:1108.4760v1 Wed, 24 Aug (2011)]
[[Category: Classical thermodynamics]]
[[Category: Classical thermodynamics]]

Latest revision as of 11:02, 13 October 2011

Notation used (from Table I):

Bridgman thermodynamic formulas [1]

Table II[edit]

pressure[edit]

temperature[edit]

volume[edit]

entropy[edit]

heat[edit]

work[edit]

internal energy[edit]

enthalpy[edit]

Gibbs energy function[edit]

See also[edit]

References[edit]

Related reading