Martyna-Tuckerman-Tobias-Klein barostat: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (tmp save) |
Carl McBride (talk | contribs) m (tmp save) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
:<math> \dot{\mathbf {p}}_i = {\mathbf {F}}_i - \frac{\overline{\mathbf {p}}_g}{W_g} {\mathbf {p}}_i - \left(\frac{1}{N_f}\right) \frac{\mathrm{Tr}[ \overline{\mathbf {p}}_g ]}{W_g} - \frac{p_{\xi}}{Q} {\mathbf {p}}_i</math> | :<math> \dot{\mathbf {p}}_i = {\mathbf {F}}_i - \frac{\overline{\mathbf {p}}_g}{W_g} {\mathbf {p}}_i - \left(\frac{1}{N_f}\right) \frac{\mathrm{Tr}[ \overline{\mathbf {p}}_g ]}{W_g} - \frac{p_{\xi}}{Q} {\mathbf {p}}_i</math> | ||
:<math>\dot{\overline{\mathbf {h}}} = \frac{\overline{\mathbf {p}}_g {\overline{\mathbf {h}}} }{W_g}</math> | |||
:<math> \dot{\overline{\mathbf {p}}}_g = V \left({\overline{\mathbf {p}}}_{\mathrm {int}} - {\overline{\mathbf {I}}} P_{\mathrm {ext}} \right) + \left[ \frac{1}{N_f} \sum_{i=1}^N \frac{{\mathbf {p}}_i^2 }{m_i} \right] {\overline{\mathbf {I}}} - \frac{p_{\xi}}{Q}{\overline{\mathbf {p}}}_g</math> | |||
:<math>\dot\xi= \frac{p_{\xi}}{Q}</math> | |||
:<math>\dot p_{\xi} = \sum_{i=1}^N \frac{{\mathbf {p}}_i^2 }{m_i} + \frac{1}{W_g} \mathrm{Tr}\left[ {\overline{\mathbf {p}}}_g^t {\overline{\mathbf {p}}}_g \right] - (N_f + d^2) kT</math> | |||
==References== | ==References== | ||
<references/> | <references/> | ||
[[category: molecular dynamics]] | [[category: molecular dynamics]] |
Latest revision as of 17:44, 31 January 2014
Martyna-Tuckerman-Tobias-Klein barostat [1] [2] has the following equations of motion (Eq.13):
References[edit]
- ↑ Glenn J. Martyna, Douglas J. Tobias, and Michael L. Klein "Constant pressure molecular dynamics algorithms", Journal of Chemical Physics 101 pp. 4177-4189 (1994)
- ↑ G. J. Martyna, M. E. Tuckerman, D. J. Tobias and M. L. Klein "Explicit reversible integrators for extended systems dynamics", Molecular Physics 87 pp. 1117-1157 (1996)