Enthalpy: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Defined as)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Definition of the enthalpy, ''H''
'''Enthalpy''' (<math>H</math>) <ref>[http://www.dwc.knaw.nl/DL/publications/PU00013601.pdf J. P. Dalton "Researches on the Joule-Kelvin effect, especially at low temperatures. I. Calculations for hydrogen", KNAW Proceedings '''11''' pp.  863-873 (1909)]</ref><ref>[http://dx.doi.org/10.1021/ed079p697 Irmgard K. Howard "H Is for Enthalpy, Thanks to Heike Kamerlingh Onnes and Alfred W. Porter", Journal of Chemical Education '''79''' pp. 697-698 (2002)]</ref> is defined as:


:<math>\left.H\right.=U+pV</math>
:<math>H:=U+pV</math>


''(-pV)'' is a ''conjugate pair''. The differential of this function is
where <math>U</math>  is the [[internal energy]], <math>p</math> is the [[pressure]], <math>V</math> is the volume.
<math>pV</math> is a ''conjugate pair''. The differential of this function is


:<math>\left.dH\right.=dU+pdV+Vdp</math>
:<math>\left.dH\right.=dU+pdV+Vdp</math>
Line 15: Line 16:
:<math>\left.dH\right.=TdS +Vdp</math>
:<math>\left.dH\right.=TdS +Vdp</math>


For ''H(S,p)'' we have the following ''total differential''
For <math>H(S,p)</math> we have the following ''total differential''


:<math>dH=\left(\frac{\partial H}{\partial S}\right)_p dS + \left(\frac{\partial H}{\partial p}\right)_S dp</math>
:<math>dH=\left(\frac{\partial H}{\partial S}\right)_p dS + \left(\frac{\partial H}{\partial p}\right)_S dp</math>
==References==
<references/>
[[Category: Classical thermodynamics]]
[[Category: Classical thermodynamics]]

Latest revision as of 18:50, 20 February 2015

Enthalpy () [1][2] is defined as:

where is the internal energy, is the pressure, is the volume. is a conjugate pair. The differential of this function is

From the Second law of thermodynamics one obtains

thus we arrive at

For we have the following total differential

References[edit]