Kirkwood-Buff theory of solutions: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) (New page: {{Stub-general}} ====Kirkwood-Buff integrals==== :<math>G_{\alpha \beta} = \int_0^\infty \left[{\mathrm g}_{\alpha \beta}^{(2)}({\mathbf r})-1\right] 4\pi r^2 ~d{\mathbf r}</math> where <m...) |
Carl McBride (talk | contribs) m (→References: Added a recent publication) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{Stub-general}} | {{Stub-general}} | ||
'''Kirkwood-Buff integrals''' <ref>[http://dx.doi.org/10.1063/1.1748352 John G. Kirkwood and Frank P. Buff "The Statistical Mechanical Theory of Solutions. I", Journal of Chemical Physics '''19''' pp. 774-777 (1951)]</ref> | |||
:<math>G_{\alpha \beta} = \int_0^\infty \left[{\mathrm g}_{\alpha \beta}^{(2)}({\mathbf r})-1\right] 4\pi r^2 ~d{\mathbf r}</math> | :<math>G_{\alpha \beta} = \int_0^\infty \left[{\mathrm g}_{\alpha \beta}^{(2)}({\mathbf r})-1\right] 4\pi r^2 ~d{\mathbf r}</math> | ||
where <math>{\mathrm g}_{\alpha \beta}({\mathbf r})</math> is the [[pair distribution function]]. | where <math>{\mathrm g}_{\alpha \beta}({\mathbf r})</math> is the [[pair distribution function]]. | ||
==References== | ==References== | ||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1063/1.434669 A. Ben-Naim "Inversion of the Kirkwood–Buff theory of solutions: Application to the water–ethanol system", Journal of Chemical Physics '''67''' pp. 4884-4890 (1977)] | |||
*[http://dx.doi.org/10.1063/1.2938859 Arieh Ben-Naim "The Kirkwood–Buff integrals for one-component liquids" Journal of Chemical Physics '''128''' 234501 (2008)] | |||
*[http://dx.doi.org/10.1063/1.3398466 Elizabeth A. Ploetz, Nikolaos Bentenitis, and Paul E. Smith "Kirkwood–Buff integrals for ideal solutions", Journal of Chemical Physics '''132''' 164501 (2010)] | |||
*[http://dx.doi.org/10.1063/1.4964779 R. Cortes-Huerto, K. Kremer and R. Potestio "Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations", Journal of Chemical Physics '''145''' 141103 (2016)] | |||
*[https://doi.org/10.1063/1.5011696  David M. Rogers "Extension of Kirkwood-Buff theory to the canonical ensemble", Journal of Chemical Physics '''148''' 054102 (2018)] | |||
*[https://doi.org/10.1080/00268976.2018.1434908 Noura Dawass, Peter Krüger, Jean-Marc Simon & Thijs J. H. Vlugt "Kirkwood–Buff integrals of finite systems: shape effects", Molecular Physics '''116''' pp. 1573-1580 (2018)] | |||
[[category: statistical mechanics]] | [[category: statistical mechanics]] |
Latest revision as of 10:54, 3 May 2018
Kirkwood-Buff integrals [1]
where is the pair distribution function.
References[edit]
Related reading
- A. Ben-Naim "Inversion of the Kirkwood–Buff theory of solutions: Application to the water–ethanol system", Journal of Chemical Physics 67 pp. 4884-4890 (1977)
- Arieh Ben-Naim "The Kirkwood–Buff integrals for one-component liquids" Journal of Chemical Physics 128 234501 (2008)
- Elizabeth A. Ploetz, Nikolaos Bentenitis, and Paul E. Smith "Kirkwood–Buff integrals for ideal solutions", Journal of Chemical Physics 132 164501 (2010)
- R. Cortes-Huerto, K. Kremer and R. Potestio "Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations", Journal of Chemical Physics 145 141103 (2016)
-  David M. Rogers "Extension of Kirkwood-Buff theory to the canonical ensemble", Journal of Chemical Physics 148 054102 (2018)
- Noura Dawass, Peter Krüger, Jean-Marc Simon & Thijs J. H. Vlugt "Kirkwood–Buff integrals of finite systems: shape effects", Molecular Physics 116 pp. 1573-1580 (2018)