Silicon: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a melting point)
m (→‎Transport Anomaly: Adde internal links)
 
(14 intermediate revisions by 3 users not shown)
Line 3: Line 3:
==Models of silicon==
==Models of silicon==
====Stillinger-Weber model====
====Stillinger-Weber model====
*[http://dx.doi.org/10.1103/PhysRevB.31.5262      Frank H. Stillinger and Thomas A. Weber "Computer simulation of local order in condensed phases of silicon", Physical Review B '''31''' pp.  5262 - 5271 (1985)]
<ref>[http://dx.doi.org/10.1103/PhysRevB.31.5262      Frank H. Stillinger and Thomas A. Weber "Computer simulation of local order in condensed phases of silicon", Physical Review B '''31''' pp.  5262-5271 (1985)]</ref>
====Tersoff potential====
====Tersoff potential====
*[http://dx.doi.org/10.1103/PhysRevB.37.6991  J. Tersoff "New empirical approach for the structure and energy of covalent systems", Physical Review B '''37''' pp. 6991-7000 (1988)]
<ref>[http://dx.doi.org/10.1103/PhysRevB.37.6991  J. Tersoff "New empirical approach for the structure and energy of covalent systems", Physical Review B '''37''' pp. 6991-7000 (1988)]</ref>
====Quantum====
<ref>[http://dx.doi.org/10.1103/PhysRevLett.94.095701  M. Kaczmarski, O.N. Bedoya-Martínez, and E.R. Hernández      "Phase Diagram of Silicon from Atomistic Simulations", Physical Review Letters '''94''' p. 095701 (2005)]</ref>
==Melting point==
==Melting point==
Yoo et al have calculated the melting point to be <math>T_m \approx1540 \pm 50 ~\mathrm{K}</math> at zeo pressure
Yoo et al have calculated the melting point to be <math>T_m \approx1540 \pm 50 ~\mathrm{K}</math> at zeo pressure
*[http://dx.doi.org/10.1016/j.cplett.2009.09.075 Soohaeng Yoo, Sotiris S. Xantheas and Xiao Cheng Zeng "The melting temperature of bulk silicon from ab initio molecular dynamics simulations", Chemical Physics Letters (2009)]
<ref>[http://dx.doi.org/10.1016/j.cplett.2009.09.075 Soohaeng Yoo, Sotiris S. Xantheas and Xiao Cheng Zeng "The melting temperature of bulk silicon from ab initio molecular dynamics simulations", Chemical Physics Letters '''481''' pp. 88-90  (2009)]</ref>. The melting line has also been calculated <ref>[http://dx.doi.org/10.1063/1.4739085  V. S. Dozhdikov, A. Yu. Basharin, and P. R. Levashov "Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa", Journal of Chemical Physics '''137''' 054502 (2012)]</ref>.
==Thermal conductivity==
[[Thermal conductivity]] (<math>k</math>) <ref>[http://dx.doi.org/10.1063/1.4767516 P. C. Howell "Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon", Journal of Chemical Physics '''137''' 224111 (2012)]</ref>.
==Transport Anomaly==
Recent [[Molecular dynamics | molecular dynamics]] studies by Dhabal et. al. shows that silicon possess transport (diffusivity [[viscosity]]) anomalies   
<ref>[https://doi.org/10.1063/1.4967939 D. Dhabal, C. Chakravarty, V. Molinero and H. Kashyap  "Comparison of liquid state anomalies in Stillinger-Weber models of Water, Silicon and Germanium", Journal of Chemical Physics '''145''' 214502 (2016)]</ref>.
 
==Polyamorphism in silicon==
==Polyamorphism in silicon==
Silicon is a [[Polyamorphic systems | polyamorphic system]].
Silicon is a [[Polyamorphic systems | polyamorphic system]].
#[http://dx.doi.org/10.1038/35107036 Sudip K. Deb, Martin Wilding, Maddury Somayazulu and Paul F. McMillan "Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon", Nature '''414''' pp. 528-530 (2001)]
<ref>[http://dx.doi.org/10.1038/35107036 Sudip K. Deb, Martin Wilding, Maddury Somayazulu and Paul F. McMillan "Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon", Nature '''414''' pp. 528-530 (2001)]</ref>
#[http://dx.doi.org/10.1038/nmat994 Srikanth Sastry and  C. Austen Angell "Liquid–liquid phase transition in supercooled silicon", Nature Materials '''2''' pp. 739 - 743 (2003)]
<ref>[http://dx.doi.org/10.1038/nmat994 Srikanth Sastry and  C. Austen Angell "Liquid–liquid phase transition in supercooled silicon", Nature Materials '''2''' pp. 739 - 743 (2003)]</ref>
#[http://dx.doi.org/10.1088/0953-8984/17/15/002  Philippe Beaucage and Normand Mousseau "Liquid–liquid phase transition in Stillinger–Weber silicon", Jorunal of Physics: Condensed Matter '''17''' pp.  2269-2279  (2005)]
<ref>[http://dx.doi.org/10.1088/0953-8984/17/15/002  Philippe Beaucage and Normand Mousseau "Liquid–liquid phase transition in Stillinger–Weber silicon", Jorunal of Physics: Condensed Matter '''17''' pp.  2269-2279  (2005)]</ref>
#[http://dx.doi.org/10.1063/1.2970084 N. Jakse and A. Pasturel "Dynamic aspects of the liquid-liquid phase transformation in silicon", Journal of Chemical Physics '''129''' 104503 (2008)]
<ref>[http://dx.doi.org/10.1063/1.2970084 N. Jakse and A. Pasturel "Dynamic aspects of the liquid-liquid phase transformation in silicon", Journal of Chemical Physics '''129''' 104503 (2008)]</ref>
[[Category: Polyamorphic systems]]
<ref>[http://dx.doi.org/10.1063/1.3663387 K. M. S. Garcez and A. Antonelli "Pressure effects on the transitions between disordered phases in supercooled liquid silicon", Journal of Chemical Physics '''135''' 204508 (2011)]</ref>
<ref>[http://dx.doi.org/10.1063/1.4926655  K. M. S. Garcez and A. Antonelli "Polyamorphism in tetrahedral substances: Similarities between silicon and ice", Journal of Chemical Physics '''143''' 034501 (2015)]</ref>
<ref>[http://dx.doi.org/10.1063/1.4928194  G. Zhao, Y. J. Yu and X. M. Tan "Nature of the first-order liquid-liquid phase transition in supercooled silicon", Journal of Chemical Physics '''143''' 054508 (2015)]</ref>.


==References==
==References==
#[http://dx.doi.org/10.1209/0295-5075/9/7/015  L. Goodwin, A. J. Skinner and D. G. Pettifor "Generating Transferable Tight-Binding Parameters: Application to Silicon", Europhysics Letters '''9''' pp. 701-706 (1989)]
<references/>
'''Related reading'''
*[http://dx.doi.org/10.1209/0295-5075/9/7/015  L. Goodwin, A. J. Skinner and D. G. Pettifor "Generating Transferable Tight-Binding Parameters: Application to Silicon", Europhysics Letters '''9''' pp. 701-706 (1989)]
*[http://dx.doi.org/10.1063/1.3268346 Tianshu Li, Davide Donadio, and Giulia Galli "Nucleation of tetrahedral solids: A molecular dynamics study of supercooled liquid silicon", Journal of Chemical Physics '''131''' 224519 (2009)]
*[http://dx.doi.org/10.1063/1.4779384  Qi Zhang, Qikai Li, and Mo Li "Melting and superheating in solids with volume shrinkage at melting: A molecular dynamics study of silicon", Journal of Chemical Physics '''138''' 044504 (2013)]
*[http://dx.doi.org/10.1063/1.4843415  Samuel Cajahuaringa, Maurice de Koning and Alex Antonelli "Revisiting dynamics near a liquid-liquid phase transition in Si and Ga: The fragile-to-strong transition", Journal of Chemical Physics '''139''' 224504 (2013)]
*[http://dx.doi.org/10.1063/1.4880559  Vishwas V. Vasisht, John Mathew, Shiladitya Sengupta and Srikanth Sastry "Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon", Journal of Chemical Physics '''141''' 124501 (2014)]
*[http://dx.doi.org/10.1063/1.4921137  M. Mayo, S. Shor, E. Yahel and G. Makov "Short range order in elemental liquids of column IV", Journal of Chemical Physics '''142''' 194501 (2015)]
 
 
[[category: models]]
[[category: models]]
[[Category: Polyamorphic systems]]

Latest revision as of 12:57, 10 June 2018

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Silicon (Si)

Models of silicon[edit]

Stillinger-Weber model[edit]

[1]

Tersoff potential[edit]

[2]

Quantum[edit]

[3]

Melting point[edit]

Yoo et al have calculated the melting point to be at zeo pressure [4]. The melting line has also been calculated [5].

Thermal conductivity[edit]

Thermal conductivity () [6].

Transport Anomaly[edit]

Recent molecular dynamics studies by Dhabal et. al. shows that silicon possess transport (diffusivity viscosity) anomalies [7].

Polyamorphism in silicon[edit]

Silicon is a polyamorphic system. [8] [9] [10] [11] [12] [13] [14].

References[edit]

  1. Frank H. Stillinger and Thomas A. Weber "Computer simulation of local order in condensed phases of silicon", Physical Review B 31 pp. 5262-5271 (1985)
  2. J. Tersoff "New empirical approach for the structure and energy of covalent systems", Physical Review B 37 pp. 6991-7000 (1988)
  3. M. Kaczmarski, O.N. Bedoya-Martínez, and E.R. Hernández "Phase Diagram of Silicon from Atomistic Simulations", Physical Review Letters 94 p. 095701 (2005)
  4. Soohaeng Yoo, Sotiris S. Xantheas and Xiao Cheng Zeng "The melting temperature of bulk silicon from ab initio molecular dynamics simulations", Chemical Physics Letters 481 pp. 88-90 (2009)
  5. V. S. Dozhdikov, A. Yu. Basharin, and P. R. Levashov "Two-phase simulation of the crystalline silicon melting line at pressures from –1 to 3 GPa", Journal of Chemical Physics 137 054502 (2012)
  6. P. C. Howell "Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon", Journal of Chemical Physics 137 224111 (2012)
  7. D. Dhabal, C. Chakravarty, V. Molinero and H. Kashyap "Comparison of liquid state anomalies in Stillinger-Weber models of Water, Silicon and Germanium", Journal of Chemical Physics 145 214502 (2016)
  8. Sudip K. Deb, Martin Wilding, Maddury Somayazulu and Paul F. McMillan "Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon", Nature 414 pp. 528-530 (2001)
  9. Srikanth Sastry and C. Austen Angell "Liquid–liquid phase transition in supercooled silicon", Nature Materials 2 pp. 739 - 743 (2003)
  10. Philippe Beaucage and Normand Mousseau "Liquid–liquid phase transition in Stillinger–Weber silicon", Jorunal of Physics: Condensed Matter 17 pp. 2269-2279 (2005)
  11. N. Jakse and A. Pasturel "Dynamic aspects of the liquid-liquid phase transformation in silicon", Journal of Chemical Physics 129 104503 (2008)
  12. K. M. S. Garcez and A. Antonelli "Pressure effects on the transitions between disordered phases in supercooled liquid silicon", Journal of Chemical Physics 135 204508 (2011)
  13. K. M. S. Garcez and A. Antonelli "Polyamorphism in tetrahedral substances: Similarities between silicon and ice", Journal of Chemical Physics 143 034501 (2015)
  14. G. Zhao, Y. J. Yu and X. M. Tan "Nature of the first-order liquid-liquid phase transition in supercooled silicon", Journal of Chemical Physics 143 054508 (2015)

Related reading