Supercooling and nucleation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Slight tidy)
 
(3 intermediate revisions by the same user not shown)
Line 3: Line 3:
Volmer and Weber kinetic model <ref>M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie '''119''' pp. 277-301 (1926)</ref> results in the following nucleation rate:
Volmer and Weber kinetic model <ref>M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie '''119''' pp. 277-301 (1926)</ref> results in the following nucleation rate:


:<math>I^{VW} = N^{eq}(n^*) k^+(n^*) =  k^+(n^*) N_A \exp \left( -\frac{W(n^*)}{k_BT}  \right) \label{eq_IVW} </math>
:<math>I^{VW} = N^{eq}(n^*) k^+(n^*) =  k^+(n^*) N_A \exp \left( -\frac{W(n^*)}{k_BT}  \right) </math>
==Szilard nucleation model==
==Szilard nucleation model==
==Homogeneous nucleation temperature==
==Homogeneous nucleation temperature==
The homogeneous nucleation temperature (<math>T_H</math>) is the [[temperature]] below which it is almost impossible to avoid spontaneous and rapid freezing.
The homogeneous nucleation temperature (<math>T_H</math>) is the [[temperature]] below which it is almost impossible to avoid spontaneous and rapid freezing.
==Zeldovich factor==
==Zeldovich factor==
The Zeldovich factor <ref>J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS '''18''' pp. 1-22 (1943)</ref> (<math>Z</math>) modifies the Volmer and Weber expression \eqref{eq_IVW}, making it applicable to spherical clusters:
The Zeldovich factor <ref>J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS '''18''' pp. 1-22 (1943)</ref> (<math>Z</math>) modifies the Volmer and Weber expression, making it applicable to spherical clusters:


:<math>Z= \sqrt{\frac{ \vert \Delta \mu \vert }{6 \pi k_B T n^*}} </math>
:<math>Z= \sqrt{\frac{ \vert \Delta \mu \vert }{6 \pi k_B T n^*}} </math>
Line 30: Line 30:
*[http://dx.doi.org/10.1063/1.3506838 Laura Filion, Michiel Hermes, Ran Ni and Marjolein Dijkstra "Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques", Journal of Chemical Physics '''133''' 244115 (2010)]
*[http://dx.doi.org/10.1063/1.3506838 Laura Filion, Michiel Hermes, Ran Ni and Marjolein Dijkstra "Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques", Journal of Chemical Physics '''133''' 244115 (2010)]
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
*[http://dx.doi.org/10.1063/1.4747326  M. D. Ediger and Peter Harrowell "Perspective: Supercooled liquids and glasses", Journal of Chemical Physics '''137''' 080901 (2012)]
*[https://doi.org/10.1063/1.5034091 Edgar D. Zanotto and Daniel R. Cassar "The race within supercooled liquids—Relaxation versus crystallization", Journal of Chemical Physics '''149''' 024503 (2018)]
;Books
;Books
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]

Latest revision as of 11:09, 17 July 2018

Supercooling, undercooling and nucleation.

Volmer and Weber kinetic model[edit]

Volmer and Weber kinetic model [1] results in the following nucleation rate:

Szilard nucleation model[edit]

Homogeneous nucleation temperature[edit]

The homogeneous nucleation temperature () is the temperature below which it is almost impossible to avoid spontaneous and rapid freezing.

Zeldovich factor[edit]

The Zeldovich factor [2] () modifies the Volmer and Weber expression, making it applicable to spherical clusters:

Zeldovich-Frenkel equation[edit]

Zeldovich-Frenkel master equation is given by

See also Shizgal and Barrett [3].

Nucleation theorem[edit]

See also[edit]

References[edit]

  1. M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie 119 pp. 277-301 (1926)
  2. J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS 18 pp. 1-22 (1943)
  3. B. Shizgal and J. C. Barrett "Time dependent nucleation", Journal of Chemical Physics 91 pp. 6505-6518 (1989)
Related reading
Books