Liu hard disk equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Expanded the reference details)
m (The definition of alpha was missing a -1. See right below Equation (13) on pp. 5 of Liu's paper.)
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:


For the stable fluid:
For the stable fluid:
:<math>Z_v = \frac{1 + \eta^2/8 + \eta^4/18 - 4 \eta^4/21}{(1-\eta)^2} </math>
:<math>Z_v = \frac{1 + \eta^2/8 + \eta^3/18 - 4 \eta^4/21}{(1-\eta)^2} </math>


where the packing fraction is given by <math>\eta = \pi \rho \sigma^2 /4 </math> where  <math>\rho</math> is density and <math>\sigma</math> is the diameter of the disks.
where the packing fraction is given by <math>\eta = \pi \rho \sigma^2 /4 </math> where  <math>\rho</math> is density and <math>\sigma</math> is the diameter of the disks.
Line 19: Line 19:
<math>Z_{solid} = \frac{2}{\alpha} + 1.9 + \alpha - 5.2 \alpha^2 + 114.48 \alpha^4</math>
<math>Z_{solid} = \frac{2}{\alpha} + 1.9 + \alpha - 5.2 \alpha^2 + 114.48 \alpha^4</math>


and <math>\alpha = \frac{2}{3^{1/2} \rho \sigma^2}</math>
and <math>\alpha = \frac{2}{3^{1/2} \rho \sigma^2} - 1</math>





Latest revision as of 18:53, 28 February 2024

The Liu equation of state for hard disks (2-dimensional hard spheres) is given by Eq. 1, 9 and 13 of [1].

For the stable fluid:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_v = \frac{1 + \eta^2/8 + \eta^3/18 - 4 \eta^4/21}{(1-\eta)^2} }

where the packing fraction is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta = \pi \rho \sigma^2 /4 } where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} is density and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} is the diameter of the disks.

The EoS for the stable fluid, liquid-hexatic transition region and hexatic:

The global EoS for all phases:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z=Z_{lh} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta <= 0.72 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z=Z_{solid} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta > 0.72 }

where:

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{2}{3^{1/2} \rho \sigma^2} - 1}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - 1.04191 * 10^8}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_1} 53
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_2} 56
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{c}} 0.75

References[edit]