Legendre polynomials: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (Style: expanded acronym) |
Carl McBride (talk | contribs) m (Added applications section.) |
||
(7 intermediate revisions by 2 users not shown) | |||
Line 4: | Line 4: | ||
:<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> | :<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> | ||
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for producing a series of orthogonal polynomials, as: | |||
:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | |||
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.: | |||
:<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math> for <math> m \ne n </math> | |||
whereas | |||
:<math>\int_{-1}^{1} P_n(x) P_n(x) d x = \frac{2}{2n+1} </math> | |||
The first seven Legendre polynomials are: | The first seven Legendre polynomials are: | ||
Line 27: | Line 39: | ||
:<math>P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)</math> | :<math>P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)</math> | ||
"shifted" Legendre polynomials (which obey the orthogonality relationship): | "shifted" Legendre polynomials (which obey the orthogonality relationship | ||
in the range [0:1]): | |||
:<math>\overline{P}_0 (x) =1</math> | :<math>\overline{P}_0 (x) =1</math> | ||
Line 58: | Line 71: | ||
:<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math> | :<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math> | ||
==Applications in statistical mechanics== | |||
*[[Computational implementation of integral equations]] | |||
*[[Order parameters]] | |||
*[[Lebwohl-Lasher model]] | |||
*[[Rotational relaxation]] | |||
==See also== | ==See also== | ||
*[[Associated Legendre function]] | *[[Associated Legendre function]] | ||
*[http://mathworld.wolfram.com/LegendrePolynomial.html Legendre Polynomial -- from Wolfram MathWorld] | *[http://mathworld.wolfram.com/LegendrePolynomial.html Legendre Polynomial -- from Wolfram MathWorld] | ||
[[category: mathematics]] | [[category: mathematics]] | ||
==References== | |||
# B. P. Demidotwitsch, I. A. Maron, and E. S. Schuwalowa, "Métodos numéricos de Análisis", Ed. Paraninfo, Madrid (1980) (translated from Russian text) |
Latest revision as of 11:06, 7 July 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for producing a series of orthogonal polynomials, as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
whereas
The first seven Legendre polynomials are:
"shifted" Legendre polynomials (which obey the orthogonality relationship in the range [0:1]):
Powers in terms of Legendre polynomials:
Applications in statistical mechanics[edit]
- Computational implementation of integral equations
- Order parameters
- Lebwohl-Lasher model
- Rotational relaxation
See also[edit]
References[edit]
- B. P. Demidotwitsch, I. A. Maron, and E. S. Schuwalowa, "Métodos numéricos de Análisis", Ed. Paraninfo, Madrid (1980) (translated from Russian text)