Legendre polynomials: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Slight tidy of reference.)
m (Added applications section.)
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
:<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math>
:<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math>


'''Legendre polynomials''' can also be defined (Ref 1) using '''Rodrigues formula''' as:
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for  producing a series of orthogonal polynomials, as:


:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math>
:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math>
Line 71: Line 71:


:<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math>  
:<math>x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]</math>  
 
==Applications in statistical mechanics==
*[[Computational implementation of integral equations]]
*[[Order parameters]]
*[[Lebwohl-Lasher model]]
*[[Rotational relaxation]]
==See also==
==See also==
*[[Associated Legendre function]]
*[[Associated Legendre function]]

Latest revision as of 11:06, 7 July 2008

Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, can be defined by the contour integral

Legendre polynomials can also be defined (Ref 1) using Rodrigues formula, used for producing a series of orthogonal polynomials, as:

Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:

for

whereas

The first seven Legendre polynomials are:







"shifted" Legendre polynomials (which obey the orthogonality relationship in the range [0:1]):




Powers in terms of Legendre polynomials:






Applications in statistical mechanics[edit]

See also[edit]

References[edit]

  1. B. P. Demidotwitsch, I. A. Maron, and E. S. Schuwalowa, "Métodos numéricos de Análisis", Ed. Paraninfo, Madrid (1980) (translated from Russian text)