1-dimensional Ising model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary |  (minor index change) | ||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| The '''1-dimensional Ising model''' is an [[Ising Models| Ising model]] that consists of  a system with <math> N </math> spins in a row. The energy of the system is given by | |||
| The energy of the system  | |||
| :<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,   | :<math>  U = -J \sum_{i=1}^{N-1} S_{i} S_{i+1} </math>,   | ||
| Line 8: | Line 5: | ||
| where each variable <math> S_j </math> can be either -1 or +1. | where each variable <math> S_j </math> can be either -1 or +1. | ||
| The partition function of the system will be: | The [[partition function]] of the system will be: | ||
| :<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,   | :<math> Q_N = \sum_{\Omega^N }  \exp \left[ K \sum_{i=1}^{N-1} S_i S_{i+1}  \right]</math>,   | ||
| Line 21: | Line 18: | ||
| Performing the sum of the possible values of <math> S_{N} </math> we get: | Performing the sum of the possible values of <math> S_{N} </math> we get: | ||
| :<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N- | :<math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right] | ||
| </math> | </math> | ||
| Line 35: | Line 32: | ||
| :<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | :<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | ||
| The [[Helmholtz energy function]] in the thermodynamic limit will be | The [[Helmholtz energy function]] in the [[thermodynamic limit]] will be | ||
| :<math> A = - N k_B T \log \left( 2 \cosh K \right) </math> | :<math> A = - N k_B T \log \left( 2 \cosh K \right) </math> | ||
| ==References== | |||
| # Rodney J. Baxter  "Exactly Solved Models in Statistical Mechanics", Academic Press (1982)  ISBN 0120831821 Chapter 2 (freely available [http://tpsrv.anu.edu.au/Members/baxter/book/Exactly.pdf pdf]) | |||
| [[Category: Models]] | [[Category: Models]] | ||
Latest revision as of 18:05, 19 February 2009
The 1-dimensional Ising model is an Ising model that consists of a system with spins in a row. The energy of the system is given by
- ,
where each variable can be either -1 or +1.
The partition function of the system will be:
- ,
where  represents the possible configuration of the N spins of the system,
and 
Performing the sum of the possible values of we get:
Taking into account that
Therefore:
The Helmholtz energy function in the thermodynamic limit will be
References[edit]
- Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 2 (freely available pdf)