Building up a body centered cubic lattice: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
Carl McBride (talk | contribs) (Added a Jmol applet + category.) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Jmol_general|Body_centered_cubic_lattice.xyz|A body centered cubic lattice}} | |||
* Consider: | * Consider: | ||
# a cubic simulation box whose sides are of length <math>\left. L \right. </math> | # a cubic simulation box whose sides are of length <math>\left. L \right. </math> | ||
Line 12: | Line 13: | ||
\right\} | \right\} | ||
</math> | </math> | ||
where the indices of a given valid site <math>(i_a,j_a,k_a)</math> must be either all odd or all even. | where the indices of a given valid site <math>(i_a,j_a,k_a)</math> must fulfill: | ||
* <math> i_a, j_a, k_a </math> must be either all odd or all even. | |||
* <math> 0 \le i_a \le 2 m </math> | |||
* <math> 0 \le j_a \le 2 m </math> | |||
* <math> 0 \le k_a \le 2 m </math> | |||
and | |||
<math> | <math> | ||
\left. | \left.\delta l = L/(2m) | ||
\delta l = L/(2m) | |||
\right. | \right. | ||
</math> | </math> | ||
== Atomic position(s) on a cubic cell == | |||
* Number of atoms per cell: 2 | |||
* Coordinates: | |||
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | |||
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( l/2, l/2, l/2 \right) </math> | |||
Cell dimensions: | |||
*<math> a=b=c = l </math> | |||
*<math> \alpha = \beta = \gamma = 90^0 </math> | |||
[[category: computer simulation techniques]] | |||
[[category: Contains Jmol]] |
Latest revision as of 13:28, 22 July 2009
<jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>Body_centered_cubic_lattice.xyz</wikiPageContents> </jmolApplet></jmol> |
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by , with being a positive integer
- The positions are those given by:
where the indices of a given valid site must fulfill:
- must be either all odd or all even.
and
Atomic position(s) on a cubic cell[edit]
- Number of atoms per cell: 2
- Coordinates:
Atom 1:
Atom 2:
Cell dimensions: