Charge equilibration for molecular dynamics simulations: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (→‎See also: Added an internal link)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{stub-general}}
{{stub-general}}
'''Charge equilibration''' (QEq) for [[molecular dynamics]] simulations <ref>[http://dx.doi.org/10.1021/ja00290a017 Wilfried J. Mortier, Karin Van Genechten, Johann Gasteiger "Electronegativity equalization: application and parametrization", Journal of the American Chemical Society '''107''' pp. 829-835 (1985)]</ref> <ref>[http://dx.doi.org/10.1021/j100161a070 Anthony K. Rappe and William A. Goddard III "Charge equilibration for molecular dynamics simulations", Journal of Physical Chemistry '''95''' pp. 3358-3363 (1991)]</ref> is a technique for calculating the distribution of charges
'''Charge equilibration''' (QEq) for [[molecular dynamics]] simulations <ref >[http://dx.doi.org/10.1021/ja00290a017 Wilfried J. Mortier, Karin Van Genechten, Johann Gasteiger "Electronegativity equalization: application and parametrization", Journal of the American Chemical Society '''107''' pp. 829-835 (1985)]</ref> <ref name="GoddardIII">[http://dx.doi.org/10.1021/j100161a070 Anthony K. Rappe and William A. Goddard III "Charge equilibration for molecular dynamics simulations", Journal of Physical Chemistry '''95''' pp. 3358-3363 (1991)]</ref> is a technique for calculating the distribution of charges
within a (large) molecule. This distribution can change with time to match changes in the local environment.
within a (large) molecule. This distribution can change with time to match changes in the local environment.
==Electronegativity and electronic hardness==
==Electronegativity and electronic hardness==
Line 10: Line 10:


:<math>\eta = \mathrm{IP - EA} \approx  \frac{\partial^2 E}{\partial Q^2} </math>
:<math>\eta = \mathrm{IP - EA} \approx  \frac{\partial^2 E}{\partial Q^2} </math>
==Charge equilibration potential energy==
==Charge equilibration energy==
Using the above expressions one has the following second order approximation for the  total electrostatic energy (<ref name="GoddardIII"> </ref> Eq. 6)
 
:<math>E = \sum_i  \left( q_i\chi_i  +  \frac{q_i^2}{2} \eta_i \right) + \sum_{i \neq j} q_i q_j J_{ij}</math>
 
The last term is a "shielded" [[Coulomb's law | Coulombic interaction]], where
 
:<math>J_{ij} ({\mathbf{r}}_{ij}) = \left\langle \phi_i \phi_j  \left\vert \frac{1}{| {\mathbf{r}}_{i} - {\mathbf{r}}_{j}  |} \right\vert \phi_i \phi_j \right\rangle</math>
 
where <math>\phi</math> represents a normalised ''ns'' Slater-type orbital.
 
==Split-charge formalism==
==Split-charge formalism==
<ref>[http://dx.doi.org/10.1063/1.2346671 Razvan A. Nistor, Jeliazko G. Polihronov, Martin H. Müser, and Nicholas J. Mosey "A generalization of the charge equilibration method for nonmetallic materials", Journal of Chemical Physics '''125''' 094108 (2006)]</ref>
<ref>[http://dx.doi.org/10.1063/1.2346671 Razvan A. Nistor, Jeliazko G. Polihronov, Martin H. Müser, and Nicholas J. Mosey "A generalization of the charge equilibration method for nonmetallic materials", Journal of Chemical Physics '''125''' 094108 (2006)]</ref>
Line 19: Line 29:
==See also==
==See also==
*[[Drude oscillators]]
*[[Drude oscillators]]
*[[Polarizable point dipoles]]
==References==
==References==
<references/>
<references/>

Latest revision as of 14:54, 16 December 2010

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

Charge equilibration (QEq) for molecular dynamics simulations [1] [2] is a technique for calculating the distribution of charges within a (large) molecule. This distribution can change with time to match changes in the local environment.

Electronegativity and electronic hardness[edit]

The atomic electronegativity is given by [3]

where IP is the ionisation potential, and EA is the electron affinity. The electronic hardness is given by [4]

Charge equilibration energy[edit]

Using the above expressions one has the following second order approximation for the total electrostatic energy ([2] Eq. 6)

The last term is a "shielded" Coulombic interaction, where

where represents a normalised ns Slater-type orbital.

Split-charge formalism[edit]

[5]

Fluctuating-charge formalism[edit]

QTPIE[edit]

[6]

See also[edit]

References[edit]