Methane: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) (Started a section on the critical properties.) |
Carl McBride (talk | contribs) m (→References: Added a recent publication) |
||
(8 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
| [[TraPPE]] || 148 || 0.373 || <ref>[http://dx.doi.org/10.1021/jp972543+ Marcus G. Martin and J. Ilja Siepmann "Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes,", The Journal of Physical Chemistry B '''102''', pp. 2569-2577 (1998)]</ref> | | [[TraPPE]] || 148 || 0.373 || <ref>[http://dx.doi.org/10.1021/jp972543+ Marcus G. Martin and J. Ilja Siepmann "Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes,", The Journal of Physical Chemistry B '''102''', pp. 2569-2577 (1998)]</ref> | ||
|} | |} | ||
==Three-body model== | |||
A Hauschild and Prausnitz <ref>[http://dx.doi.org/10.1080/08927029308022507 T. Hauschild and J. M. Prausnitz "Monte-Carlo Calculations for Methane and Argon over a Wide Range of Density and Temperature, Including the Two-Phase Vapor-Liquid Region", Molecular Simulation '''11''' pp. 177-185 (1993)]</ref> like [[Many-body interactions | three-body potential]] has been developed by Abbaspour <ref>[http://dx.doi.org/10.1016/j.molliq.2011.04.002 M. Abbaspour "Computation of some thermodynamics, transport, structural properties, and new equation of state for fluid methane using two-body and three-body intermolecular potentials from molecular dynamics simulation", Journal of Molecular Liquids '''161''' pp. 30-35 (2011)]</ref>, building on the OPLS model. | |||
==Plastic crystal phase== | ==Plastic crystal phase== | ||
The methane has a [[Plastic crystals |plastic crystal]] phase. | The methane has a [[Plastic crystals |plastic crystal]] phase. | ||
*[http://dx.doi.org/10.1063/1.439027 David G. Bounds, Michael L. Klein, and G. N. Patey "Molecular dynamics simulation of the plastic phase of solid methane", Journal of Chemical Physics '''72''' pp. 5348-5356 (1980)] | *[http://dx.doi.org/10.1063/1.439027 David G. Bounds, Michael L. Klein, and G. N. Patey "Molecular dynamics simulation of the plastic phase of solid methane", Journal of Chemical Physics '''72''' pp. 5348-5356 (1980)] | ||
*[http://dx.doi.org/10.1103/PhysRevLett.77.2638 M. H. Müser and B. J. Berne "Path-Integral Monte Carlo Scheme for Rigid Tops: Application to the Quantum Rotator Phase Transition in Solid Methane", Physical Review Letters '''77''' pp. 2638-2641 (1996)] | *[http://dx.doi.org/10.1103/PhysRevLett.77.2638 M. H. Müser and B. J. Berne "Path-Integral Monte Carlo Scheme for Rigid Tops: Application to the Quantum Rotator Phase Transition in Solid Methane", Physical Review Letters '''77''' pp. 2638-2641 (1996)] | ||
== | |||
==Transport properties== | |||
<ref>[http://dx.doi.org/10.1063/1.4896538 C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics '''141''' 134101 (2014)]</ref>. | |||
==References== | ==References== | ||
<references/> | <references/> | ||
Line 23: | Line 27: | ||
*[http://dx.doi.org/10.1080/00268977900103151 S. Murad, D. J. Evans, K. E. Gubbins, W. B. Streett and D. J. Tildesley "Molecular dynamics simulation of dense fluid methane", Molecular Physics '''37''' pp. 725-736 (1979)] | *[http://dx.doi.org/10.1080/00268977900103151 S. Murad, D. J. Evans, K. E. Gubbins, W. B. Streett and D. J. Tildesley "Molecular dynamics simulation of dense fluid methane", Molecular Physics '''37''' pp. 725-736 (1979)] | ||
*[http://dx.doi.org/10.1080/0892702031000117270 Josep C. Pamies, Clare McCabe, Peter T. Cummings and Lourdes F. Vega "Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations", Molecular Simulation '''29''' pp. 463-470 (2003)] | *[http://dx.doi.org/10.1080/0892702031000117270 Josep C. Pamies, Clare McCabe, Peter T. Cummings and Lourdes F. Vega "Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations", Molecular Simulation '''29''' pp. 463-470 (2003)] | ||
*[http://dx.doi.org/10.1063/1.4905526 Steven L. Mielke, and Donald G. Truhlar "Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane", Journal of Chemical Physics '''142''' 044105 (2015)] | |||
*[http://dx.doi.org/10.1063/1.4919079 Joyjit Chattoraj, Tobias Risthaus, Oliver Rubner, Andreas Heuer and Stefan Grimme "A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures", Journal of Chemical Physics '''142''' 164508 (2015)] | |||
*[http://dx.doi.org/10.1063/1.4962261 Alec Owens, Sergei N. Yurchenko, Andrey Yachmenev, Jonathan Tennyson and Walter Thiel "A highly accurate ab initio potential energy surface for methane", Journal of Chemical Physics '''145''' 104305 (2016)] | |||
*[http://dx.doi.org/10.1063/1.4961973 A. V. Nikitin, M. Rey and Vl. G. Tyuterev "First fully ab initio potential energy surface of methane with a spectroscopic accuracy", Journal of Chemical Physics '''145''' 114309 (2016)] | |||
*[https://doi.org/10.1016/j.molliq.2017.07.112 Chuntao Jiang, JieOuyang, Lihua Wang, Qingsheng Liu, and Wuming Li "Coarse graining of the fully atomic methane models to monatomic isotropic models using relative entropy minimization", Journal of Molecular Liquids '''242''' pp. 1138-1147 (2017)] | |||
[[category: models]] | [[category: models]] | ||
[[category: Contains Jmol]] | [[category: Contains Jmol]] |
Latest revision as of 14:33, 14 September 2017
<jmol> <jmolApplet> <script>set spin X 10; spin on</script> <size>200</size> <color>lightgrey</color> <wikiPageContents>methane.pdb</wikiPageContents> </jmolApplet></jmol> |
Methane (CH4) is the first in the homologous series of alkanes.
Lennard-Jones parameters[edit]
Methane is sometimes simulated as a single Lennard-Jones site using a united-atom model. Some Lennard-Jones parameters for methane are listed in the following table:
Force-field | (K) | (nm) | Reference |
OPLS | 147.9 | 0.373 | [1] |
TraPPE | 148 | 0.373 | [2] |
Three-body model[edit]
A Hauschild and Prausnitz [3] like three-body potential has been developed by Abbaspour [4], building on the OPLS model.
Plastic crystal phase[edit]
The methane has a plastic crystal phase.
- David G. Bounds, Michael L. Klein, and G. N. Patey "Molecular dynamics simulation of the plastic phase of solid methane", Journal of Chemical Physics 72 pp. 5348-5356 (1980)
- M. H. Müser and B. J. Berne "Path-Integral Monte Carlo Scheme for Rigid Tops: Application to the Quantum Rotator Phase Transition in Solid Methane", Physical Review Letters 77 pp. 2638-2641 (1996)
Transport properties[edit]
[5].
References[edit]
- ↑ William L. Jorgensen, Jeffry D. Madura, Carol J. Swenson "Optimized intermolecular potential functions for liquid hydrocarbons", Journal of the American Chemical Society 106 pp. 6638–6646 (1984)
- ↑ Marcus G. Martin and J. Ilja Siepmann "Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes,", The Journal of Physical Chemistry B 102, pp. 2569-2577 (1998)
- ↑ T. Hauschild and J. M. Prausnitz "Monte-Carlo Calculations for Methane and Argon over a Wide Range of Density and Temperature, Including the Two-Phase Vapor-Liquid Region", Molecular Simulation 11 pp. 177-185 (1993)
- ↑ M. Abbaspour "Computation of some thermodynamics, transport, structural properties, and new equation of state for fluid methane using two-body and three-body intermolecular potentials from molecular dynamics simulation", Journal of Molecular Liquids 161 pp. 30-35 (2011)
- ↑ C. G. Aimoli, E. J. Maginn and C. R. A. Abreu "Transport properties of carbon dioxide and methane from molecular dynamics simulations", Journal of Chemical Physics 141 134101 (2014)
Related reading
- S. Murad, D. J. Evans, K. E. Gubbins, W. B. Streett and D. J. Tildesley "Molecular dynamics simulation of dense fluid methane", Molecular Physics 37 pp. 725-736 (1979)
- Josep C. Pamies, Clare McCabe, Peter T. Cummings and Lourdes F. Vega "Coexistence Densities of Methane and Propane by Canonical Molecular Dynamics and Gibbs Ensemble Monte Carlo Simulations", Molecular Simulation 29 pp. 463-470 (2003)
- Steven L. Mielke, and Donald G. Truhlar "Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane", Journal of Chemical Physics 142 044105 (2015)
- Joyjit Chattoraj, Tobias Risthaus, Oliver Rubner, Andreas Heuer and Stefan Grimme "A multi-scale approach to characterize pure CH4, CF4, and CH4/CF4 mixtures", Journal of Chemical Physics 142 164508 (2015)
- Alec Owens, Sergei N. Yurchenko, Andrey Yachmenev, Jonathan Tennyson and Walter Thiel "A highly accurate ab initio potential energy surface for methane", Journal of Chemical Physics 145 104305 (2016)
- A. V. Nikitin, M. Rey and Vl. G. Tyuterev "First fully ab initio potential energy surface of methane with a spectroscopic accuracy", Journal of Chemical Physics 145 114309 (2016)
- Chuntao Jiang, JieOuyang, Lihua Wang, Qingsheng Liu, and Wuming Li "Coarse graining of the fully atomic methane models to monatomic isotropic models using relative entropy minimization", Journal of Molecular Liquids 242 pp. 1138-1147 (2017)