Universality classes: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Ising: Added some internal links)
(Added short description for \eta)
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Stub-general}}
'''Universality classes''' are groups of [[Idealised models | models]] that have the same set of [[critical exponents]]
{| border="1"
 
:{| border="1"
|-  
|-  
| <math>d</math> || <math>n</math> || <math>\sigma</math> || name
| dimension ||<math>\alpha</math> || <math>\beta</math> || <math>\gamma</math> || <math>\delta</math> ||<math>\nu</math> || <math>\eta</math> || class
|-  
|-  
|  ||  ||   || 3-state Potts
||    ||  || || ||  || || 3-state Potts
|-  
|-  
|  ||  ||   ||Ashkin-Teller
|  ||  ||   || || || ||  ||Ashkin-Teller
|-  
|-  
|  ||   ||   ||Chiral
|  || ||    || || || || ||Chiral
|-  
|-  
|  ||  ||   ||Directed percolation
|  ||  ||   || || || ||  ||Directed percolation
|-  
|-  
|  ||   ||   ||Ising
| 2 ||  0 || 1/8 || 7/4 || || 1  || 1/4  || 2D Ising
|-  
|-  
|  ||   ||   ||Local linear interface
| 3 ||  0.1096(5)  || 0.32653(10) || 1.2373(2)    || 4.7893(8) ||  0.63012(16) || 0.03639(15) || 3D Ising
|-  
|-  
|  ||   ||  ||Mean-field
|  ||   ||    || || || ||  ||Local linear interface
|-  
|-  
|  ||  ||   ||Molecular beam epitaxy
| any |0 || 1/2   || 1  || 3 || 1/2 || 0 || Mean-field
|-  
|-  
|  ||  ||  ||Random-field
|  ||  ||    || || || ||  ||Molecular beam epitaxy
|-
|  ||  ||  ||  || || ||  ||Random-field
|-
| 3 ||  −0.0146(8) || 0.3485(2)  ||  1.3177(5) || 4.780(2)  ||0.67155(27)  || 0.0380(4) ||  XY
|}
|}
where
*<math>\alpha</math>  is known as  the [[Critical exponents#Heat capacity exponent| heat capacity exponent]] 
*<math>\beta</math>  is known as the  [[Critical exponents#Magnetic order parameter exponent | magnetic order parameter exponent]]
*<math>\gamma</math> is known as  the [[Critical exponents#Susceptibility exponent |susceptibility exponent ]]
*<math>\delta</math> is known as  the [[Critical exponents#Equation of state exponent |equation of state exponent ]]
*<math>\nu</math> is known as the [[Critical exponents#Correlation length | correlation length exponent]]
*<math>\eta</math> is known as the anomalous dimension in the critical correlation function.
=Derivations=
==3-state Potts==
==3-state Potts==
[[Potts model]]
==Ashkin-Teller==
==Ashkin-Teller==
[[Ashkin-Teller model]]
==Chiral==
==Chiral==
==Directed percolation==
==Directed percolation==
Line 42: Line 58:


In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the [[critical exponents]] are
In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the [[critical exponents]] are
<math>
 
:<math>
\alpha=0
\alpha=0
</math>
</math>
(In fact, the [[Heat capacity |specific heat]] diverges logarithmically with the [[Critical points |critical temperature]])
(In fact, the [[Heat capacity |specific heat]] diverges logarithmically with the [[Critical points |critical temperature]])


Line 58: Line 76:
\delta=15
\delta=15
</math>
</math>
along with <ref>[http://dx.doi.org/10.1103/PhysRev.180.594 Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review '''180''' pp. 594-600 (1969)]</ref>:
:<math>
\nu=1
</math>
:<math>
\eta = 1/4
</math>
In three dimensions, the critical exponents are not known exactly. However, [[Monte Carlo | Monte Carlo simulations]] and  [[Renormalisation group]] analysis provide accurate estimates <ref name="Campostrini2002">[http://dx.doi.org/10.1103/PhysRevE.65.066127 Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice", Physical Review E '''65''' 066127 (2002)]</ref>:
:<math>
\nu=0.63012(16)
</math>
:<math>
\alpha=0.1096(5)
</math>
:<math>
\beta= 0.32653(10)
</math>
:<math>
\gamma=1.2373(2)
</math>
:<math>
\delta=4.7893(8)
</math>
:<math>
\eta =0.03639(15)
</math>
with a critical temperature of <math>k_BT_c = 4.51152786~S </math><ref>[http://dx.doi.org/10.1088/0305-4470/29/17/042 A. L. Talapov and H. W. J Blöte "The magnetization of the 3D Ising model", Journal of Physics A: Mathematical and General '''29''' pp. 5727-5733 (1996)]</ref>. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.


==Local linear interface==
==Local linear interface==
==Mean-field==
==Mean-field==
The [[critical exponents]] of are derived as follows <ref>Linda E. Reichl "A Modern Course in Statistical Physics", Wiley-VCH, Berlin 3rd Edition (2009) ISBN 3-527-40782-0 &sect; 4.9.4 </ref>:
====Heat capacity exponent: <math>\alpha</math>====
(final result: <math>\alpha=0</math>)
====Magnetic order parameter exponent: <math>\beta</math>====
(final result: <math>\beta=1/2</math>)
====Susceptibility exponent: <math>\gamma</math>====
(final result: <math>\gamma=1</math>)
====Equation of state exponent: <math>\delta</math>====
(final result: <math>\delta=3</math>)
====Correlation length exponent: <math>\nu</math>====
(final result: <math>\nu=1/2</math>)
====Correlation function exponent: <math>\eta</math>====
(final result: <math>\eta=0</math>)
==Molecular beam epitaxy==
==Molecular beam epitaxy==
==See also==
*[[Critical exponents]]
==Random-field==
==Random-field==
==XY==
For the three dimensional [[XY model]] one has the following [[critical exponents]]<ref name="Campostrini2001" >[http://dx.doi.org/10.1103/PhysRevB.63.214503  Massimo Campostrini, Martin Hasenbusch, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "Critical behavior of the three-dimensional XY universality class" Physical Review B  '''63''' 214503 (2001)]</ref>:
:<math>
\nu=0.67155(27)
</math>
:<math>\alpha = -0.0146(8)</math>
:<math>
\beta= 0.3485(2)
</math>
:<math>
\gamma=1.3177(5)
</math>
:<math>
\delta=4.780(2)
</math>
:<math>
\eta =0.0380(4)
</math>
=References=
<references/>
[[category: Renormalisation group]]
[[category: Renormalisation group]]

Latest revision as of 05:51, 5 November 2021

Universality classes are groups of models that have the same set of critical exponents

dimension class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
2 0 1/8 7/4 1 1/4 2D Ising
3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising
Local linear interface
any 0 1/2 1 3 1/2 0 Mean-field
Molecular beam epitaxy
Random-field
3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY

where

Derivations[edit]

3-state Potts[edit]

Potts model

Ashkin-Teller[edit]

Ashkin-Teller model

Chiral[edit]

Directed percolation[edit]

Ising[edit]

The Hamiltonian of the Ising model is


where and the summation runs over the lattice sites.

The order parameter is

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are

(In fact, the specific heat diverges logarithmically with the critical temperature)

along with [1]:


In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:

with a critical temperature of [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface[edit]

Mean-field[edit]

The critical exponents of are derived as follows [4]:

Heat capacity exponent: [edit]

(final result: )

Magnetic order parameter exponent: [edit]

(final result: )

Susceptibility exponent: [edit]

(final result: )

Equation of state exponent: [edit]

(final result: )

Correlation length exponent: [edit]

(final result: )

Correlation function exponent: [edit]

(final result: )

Molecular beam epitaxy[edit]

Random-field[edit]

XY[edit]

For the three dimensional XY model one has the following critical exponents[5]:

References[edit]