Universality classes: Difference between revisions
Carl McBride (talk | contribs) m (→Mean-field: Started Mean field section) |
(Added short description for \eta) |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''Universality classes''' are groups of [[Idealised models | models]] that have the same set of [[critical exponents]] | |||
{| border="1" | |||
:{| border="1" | |||
|- | |- | ||
| <math> | | dimension ||<math>\alpha</math> || <math>\beta</math> || <math>\gamma</math> || <math>\delta</math> ||<math>\nu</math> || <math>\eta</math> || class | ||
|- | |- | ||
| || || | | || || || || || || || 3-state Potts | ||
|- | |- | ||
| || || | | || || || || || || ||Ashkin-Teller | ||
|- | |- | ||
| || | | || || || || || || ||Chiral | ||
|- | |- | ||
| || || | | || || || || || || ||Directed percolation | ||
|- | |- | ||
| || | | 2 || 0 || 1/8 || 7/4 || || 1 || 1/4 || 2D Ising | ||
|- | |- | ||
| || | | 3 || 0.1096(5) || 0.32653(10) || 1.2373(2) || 4.7893(8) || 0.63012(16) || 0.03639(15) || 3D Ising | ||
|- | |- | ||
| || | | || || || || || || ||Local linear interface | ||
|- | |- | ||
| || || | | any || 0 || 1/2 || 1 || 3 || 1/2 || 0 || Mean-field | ||
|- | |- | ||
| || || ||Random-field | | || || || || || || ||Molecular beam epitaxy | ||
|- | |||
| || || || || || || ||Random-field | |||
|- | |||
| 3 || −0.0146(8) || 0.3485(2) || 1.3177(5) || 4.780(2) ||0.67155(27) || 0.0380(4) || XY | |||
|} | |} | ||
where | |||
*<math>\alpha</math> is known as the [[Critical exponents#Heat capacity exponent| heat capacity exponent]] | |||
*<math>\beta</math> is known as the [[Critical exponents#Magnetic order parameter exponent | magnetic order parameter exponent]] | |||
*<math>\gamma</math> is known as the [[Critical exponents#Susceptibility exponent |susceptibility exponent ]] | |||
*<math>\delta</math> is known as the [[Critical exponents#Equation of state exponent |equation of state exponent ]] | |||
*<math>\nu</math> is known as the [[Critical exponents#Correlation length | correlation length exponent]] | |||
*<math>\eta</math> is known as the anomalous dimension in the critical correlation function. | |||
=Derivations= | |||
==3-state Potts== | ==3-state Potts== | ||
[[Potts model]] | |||
==Ashkin-Teller== | ==Ashkin-Teller== | ||
[[Ashkin-Teller model]] | |||
==Chiral== | ==Chiral== | ||
==Directed percolation== | ==Directed percolation== | ||
Line 42: | Line 58: | ||
In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the [[critical exponents]] are | In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the [[critical exponents]] are | ||
<math> | |||
:<math> | |||
\alpha=0 | \alpha=0 | ||
</math> | </math> | ||
(In fact, the [[Heat capacity |specific heat]] diverges logarithmically with the [[Critical points |critical temperature]]) | (In fact, the [[Heat capacity |specific heat]] diverges logarithmically with the [[Critical points |critical temperature]]) | ||
Line 58: | Line 76: | ||
\delta=15 | \delta=15 | ||
</math> | </math> | ||
along with <ref>[http://dx.doi.org/10.1103/PhysRev.180.594 Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review '''180''' pp. 594-600 (1969)]</ref>: | |||
:<math> | |||
\nu=1 | |||
</math> | |||
:<math> | |||
\eta = 1/4 | |||
</math> | |||
In three dimensions, the critical exponents are not known exactly. However, [[Monte Carlo | Monte Carlo simulations]] and [[Renormalisation group]] analysis provide accurate estimates <ref name="Campostrini2002">[http://dx.doi.org/10.1103/PhysRevE.65.066127 Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice", Physical Review E '''65''' 066127 (2002)]</ref>: | |||
:<math> | |||
\nu=0.63012(16) | |||
</math> | |||
:<math> | |||
\alpha=0.1096(5) | |||
</math> | |||
:<math> | |||
\beta= 0.32653(10) | |||
</math> | |||
:<math> | |||
\gamma=1.2373(2) | |||
</math> | |||
:<math> | |||
\delta=4.7893(8) | |||
</math> | |||
:<math> | |||
\eta =0.03639(15) | |||
</math> | |||
with a critical temperature of <math>k_BT_c = 4.51152786~S </math><ref>[http://dx.doi.org/10.1088/0305-4470/29/17/042 A. L. Talapov and H. W. J Blöte "The magnetization of the 3D Ising model", Journal of Physics A: Mathematical and General '''29''' pp. 5727-5733 (1996)]</ref>. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections. | |||
==Local linear interface== | ==Local linear interface== | ||
Line 68: | Line 125: | ||
====Susceptibility exponent: <math>\gamma</math>==== | ====Susceptibility exponent: <math>\gamma</math>==== | ||
(final result: <math>\gamma=1</math>) | (final result: <math>\gamma=1</math>) | ||
====Equation of state exponent: <math>\delta</math>==== | |||
(final result: <math>\delta=3</math>) | |||
====Correlation length exponent: <math>\nu</math>==== | |||
(final result: <math>\nu=1/2</math>) | |||
====Correlation function exponent: <math>\eta</math>==== | |||
(final result: <math>\eta=0</math>) | |||
==Molecular beam epitaxy== | ==Molecular beam epitaxy== | ||
==Random-field== | ==Random-field== | ||
==XY== | |||
For the three dimensional [[XY model]] one has the following [[critical exponents]]<ref name="Campostrini2001" >[http://dx.doi.org/10.1103/PhysRevB.63.214503 Massimo Campostrini, Martin Hasenbusch, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "Critical behavior of the three-dimensional XY universality class" Physical Review B '''63''' 214503 (2001)]</ref>: | |||
:<math> | |||
\nu=0.67155(27) | |||
</math> | |||
:<math>\alpha = -0.0146(8)</math> | |||
:<math> | |||
\beta= 0.3485(2) | |||
</math> | |||
:<math> | |||
\gamma=1.3177(5) | |||
</math> | |||
:<math> | |||
\delta=4.780(2) | |||
</math> | |||
:<math> | |||
\eta =0.0380(4) | |||
</math> | |||
=References= | |||
<references/> | |||
[[category: Renormalisation group]] | [[category: Renormalisation group]] |
Latest revision as of 05:51, 5 November 2021
Universality classes are groups of models that have the same set of critical exponents
dimension class 3-state Potts Ashkin-Teller Chiral Directed percolation 2 0 1/8 7/4 1 1/4 2D Ising 3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising Local linear interface any 0 1/2 1 3 1/2 0 Mean-field Molecular beam epitaxy Random-field 3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY
where
- is known as the heat capacity exponent
- is known as the magnetic order parameter exponent
- is known as the susceptibility exponent
- is known as the equation of state exponent
- is known as the correlation length exponent
- is known as the anomalous dimension in the critical correlation function.
Derivations[edit]
3-state Potts[edit]
Ashkin-Teller[edit]
Chiral[edit]
Directed percolation[edit]
Ising[edit]
The Hamiltonian of the Ising model is
where and the summation runs over the lattice sites.
The order parameter is
In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are
(In fact, the specific heat diverges logarithmically with the critical temperature)
along with [1]:
In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:
with a critical temperature of [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.
Local linear interface[edit]
Mean-field[edit]
The critical exponents of are derived as follows [4]:
Heat capacity exponent: [edit]
(final result: )
Magnetic order parameter exponent: [edit]
(final result: )
Susceptibility exponent: [edit]
(final result: )
Equation of state exponent: [edit]
(final result: )
Correlation length exponent: [edit]
(final result: )
Correlation function exponent: [edit]
(final result: )
Molecular beam epitaxy[edit]
Random-field[edit]
XY[edit]
For the three dimensional XY model one has the following critical exponents[5]:
References[edit]
- ↑ Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review 180 pp. 594-600 (1969)
- ↑ Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice", Physical Review E 65 066127 (2002)
- ↑ A. L. Talapov and H. W. J Blöte "The magnetization of the 3D Ising model", Journal of Physics A: Mathematical and General 29 pp. 5727-5733 (1996)
- ↑ Linda E. Reichl "A Modern Course in Statistical Physics", Wiley-VCH, Berlin 3rd Edition (2009) ISBN 3-527-40782-0 § 4.9.4
- ↑ Massimo Campostrini, Martin Hasenbusch, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "Critical behavior of the three-dimensional XY universality class" Physical Review B 63 214503 (2001)