Structure factor: Difference between revisions
No edit summary |
Carl McBride (talk | contribs) m (Defined as) |
||
(20 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
The '''structure factor''', <math>S(k)</math>, for a monatomic system is defined by: | The '''static structure factor''', <math>S(k)</math>, for a monatomic system composed of spherical scatterers is defined by (Eq. 1 in <ref>[http://dx.doi.org/10.1088/0953-8984/6/41/006 A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", Journal of Physics: Condensed Matter '''6''' pp. 8415-8427 (1994)]</ref>): | ||
:<math>S(k) := 1 + \frac{4 \pi \rho}{k} \int_0^{\infty} ( g_2(r) -1 ) r \sin (kr) ~{\mathrm {d}}r</math> | |||
where <math>g_2(r)</math> is the [[radial distribution function]], and <math>k</math> is the scattering wave-vector modulus | |||
:<math>k= |\mathbf{k}|= \frac{4 \pi }{\lambda} \sin \left( \frac{\theta}{2}\right)</math>. | |||
:<math>k= |\mathbf{k}|= \frac{4 \pi }{\lambda \sin \left( \frac{\theta}{2}\right) | |||
The structure factor is basically a [[Fourier analysis | Fourier transform]] of the [[pair distribution function]] <math>{\rm g}(r)</math>, | The structure factor is basically a [[Fourier analysis | Fourier transform]] of the [[pair distribution function]] <math>{\rm g}(r)</math>, | ||
Line 18: | Line 17: | ||
from which one can calculate the [[Compressibility | isothermal compressibility]]. | from which one can calculate the [[Compressibility | isothermal compressibility]]. | ||
To calculate <math>S(k)</math> in | To calculate <math>S(k)</math> in [[Computer simulation techniques |molecular simulations]] one typically uses: | ||
:<math>S(k) = \ | :<math>S(k) = \frac{1}{N} \sum^{N}_{n,m=1} \langle\exp(-i\mathbf{k}(\mathbf{r}_n-\mathbf{r}_m)) \rangle </math>, | ||
where <math>N</math> is the number of particles and <math>\mathbf{r}_n</math> and | |||
<math>\mathbf{r}_m</math> are the coordinates of particles | |||
<math>n</math> and <math>m</math> respectively. | |||
The dynamic, time dependent structure factor is defined as follows: | |||
:<math>S(k,t) = \frac{1}{N} \sum^{N}_{n,m=1} \langle \exp(-i\mathbf{k}(\mathbf{r}_n(t)-\mathbf{r}_m(0))) \rangle </math>, | |||
The ratio between the dynamic and the static structure factor, <math>S(k,t)/S(k,0)</math>, is known | |||
as the collective (or coherent) intermediate scattering function. | |||
==Binary mixtures== | |||
<ref>[http://dx.doi.org/10.1080/14786436508211931 T. E. Faber and J. M. Ziman "A theory of the electrical properties of liquid metals III. the resistivity of binary alloys", Philosophical Magazine '''11''' pp. 153-173 (1965)]</ref><ref>[http://dx.doi.org/10.1103/PhysRev.156.685 N. W. Ashcroft and David C. Langreth "Structure of Binary Liquid Mixtures. I", Physical Review '''156''' pp. 685–692 (1967)]</ref><ref>[http://dx.doi.org/10.1103/PhysRevB.2.3004 A. B. Bhatia and D. E. Thornton "Structural Aspects of the Electrical Resistivity of Binary Alloys", Physical Review B '''2''' pp. 3004-3012 (1970)]</ref> | |||
==References== | ==References== | ||
<references/> | |||
;Related reading | |||
*[http://dx.doi.org/10.1007/BF01391926 F. Zernike and J. A. Prins "Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung", Zeitschrift für Physik '''41''' pp. 184-194 (1920)] | |||
*P. Debye and H. Menke "", Physik. Zeits. '''31''' pp. 348- (1930) | |||
*B. E. Warren "X-Ray Diffraction", Dover Publications (1969) ISBN 0486663175 § 10.4 | |||
*Jean-Pierre Hansen and I.R. McDonald "Theory of Simple Liquids" (Third Edition) [http://dx.doi.org/10.1016/B978-012370535-8/50006-9 Chapter 4: "Distribution-function Theories"] § 4.1 | |||
[[category: Statistical mechanics]] | [[category: Statistical mechanics]] |
Latest revision as of 18:49, 20 February 2015
The static structure factor, , for a monatomic system composed of spherical scatterers is defined by (Eq. 1 in [1]):
where is the radial distribution function, and is the scattering wave-vector modulus
- .
The structure factor is basically a Fourier transform of the pair distribution function ,
At zero wavenumber, i.e. ,
from which one can calculate the isothermal compressibility.
To calculate in molecular simulations one typically uses:
- ,
where is the number of particles and and are the coordinates of particles and respectively.
The dynamic, time dependent structure factor is defined as follows:
- ,
The ratio between the dynamic and the static structure factor, , is known as the collective (or coherent) intermediate scattering function.
Binary mixtures[edit]
References[edit]
- ↑ A. Filipponi, "The radial distribution function probed by X-ray absorption spectroscopy", Journal of Physics: Condensed Matter 6 pp. 8415-8427 (1994)
- ↑ T. E. Faber and J. M. Ziman "A theory of the electrical properties of liquid metals III. the resistivity of binary alloys", Philosophical Magazine 11 pp. 153-173 (1965)
- ↑ N. W. Ashcroft and David C. Langreth "Structure of Binary Liquid Mixtures. I", Physical Review 156 pp. 685–692 (1967)
- ↑ A. B. Bhatia and D. E. Thornton "Structural Aspects of the Electrical Resistivity of Binary Alloys", Physical Review B 2 pp. 3004-3012 (1970)
- Related reading
- F. Zernike and J. A. Prins "Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung", Zeitschrift für Physik 41 pp. 184-194 (1920)
- P. Debye and H. Menke "", Physik. Zeits. 31 pp. 348- (1930)
- B. E. Warren "X-Ray Diffraction", Dover Publications (1969) ISBN 0486663175 § 10.4
- Jean-Pierre Hansen and I.R. McDonald "Theory of Simple Liquids" (Third Edition) Chapter 4: "Distribution-function Theories" § 4.1