Building up a diamond lattice: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
* Consider: | * Consider: | ||
# a cubic simulation box whose sides are of length <math>\left. L \right. </math> | # a cubic simulation box whose sides are of length <math>\left. L \right. </math> | ||
Line 23: | Line 21: | ||
* <math> 0 \le k_a < 4m </math>, | * <math> 0 \le k_a < 4m </math>, | ||
* the sum of <math> \left. i_a + j_a + k_a \right. </math> can have only the values: 0, 3, 4, 7, 8, 10, ... | * the sum of <math> \left. i_a + j_a + k_a \right. </math> can have only the values: 0, 3, 4, 7, 8, 10, ... | ||
i.e, <math> \left. i_a + j_a + k_a = 4 n \right. </math>; OR; <math> \left. i_a + j_a + k_a = 4 n + 3 \right. </math>, with <math> n </math> | i.e, <math> \left. i_a + j_a + k_a = 4 n \right. </math>; OR; <math> \left. i_a + j_a + k_a = 4 n + 3 \right. </math>, with <math> n </math> being | ||
any integer number | any integer number | ||
* the indices <math> \left\{ i_a, j_a, k_a \right\} </math>must be either all even or all odd. | * the indices <math> \left\{ i_a, j_a, k_a \right\} </math>must be either all even or all odd. | ||
Line 32: | Line 30: | ||
\right. | \right. | ||
</math> | </math> | ||
== Atomic position(s) on a cubic cell == | |||
* Number of atoms per cell: 8 | |||
* Coordinates: | |||
Atom 1: <math> \left( x_1, y_1, z_1 \right) = \left( 0, 0, 0 \right) </math> | |||
Atom 2: <math> \left( x_2, y_2, z_2 \right) = \left( 0 , \frac{l}{2}, \frac{l}{2}\right) </math> | |||
Atom 3: <math> \left( x_3, y_3, z_3 \right) = \left( \frac{l}{2}, 0, \frac{l}{2} \right) </math> | |||
Atom 4: <math> \left( x_4, y_4, z_4 \right) = \left( \frac{l}{2}, \frac{l}{2}, 0 \right) </math> | |||
Atom 5: <math> \left( x_5, y_5, z_5 \right) = \left( \frac{l}{4}, \frac{l}{4}, \frac{l}{4} \right) </math> | |||
Atom 6: <math> \left( x_6, y_6, z_6 \right) = \left( \frac{l}{4}, \frac{3l}{4}, \frac{3l}{4} \right) </math> | |||
Atom 7: <math> \left( x_7, y_7, z_7 \right) = \left( \frac{3l}{4}, \frac{l}{4}, \frac{3l}{4} \right) </math> | |||
Atom 8: <math> \left( x_8, y_8, z_8 \right) = \left( \frac{3l}{4}, \frac{3l}{4}, \frac{l}{4} \right) </math> | |||
Cell dimensions: | |||
*<math> a=b=c = l </math> | |||
*<math> \alpha = \beta = \gamma = 90^0 </math> | |||
[[category: computer simulation techniques]] |
Latest revision as of 11:00, 13 February 2008
- Consider:
- a cubic simulation box whose sides are of length
- a number of lattice positions, given by ,
with being a positive integer
- The positions are those given by:
where the indices of a given valid site are integer numbers that must fulfill the following criteria
- ,
- the sum of can have only the values: 0, 3, 4, 7, 8, 10, ...
i.e, ; OR; , with being any integer number
- the indices must be either all even or all odd.
with
Atomic position(s) on a cubic cell[edit]
- Number of atoms per cell: 8
- Coordinates:
Atom 1:
Atom 2:
Atom 3:
Atom 4:
Atom 5:
Atom 6:
Atom 7:
Atom 8:
Cell dimensions: