Ornstein-Zernike relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
(→‎References: Added a recent publication)
 
(13 intermediate revisions by 6 users not shown)
Line 1: Line 1:
Notation:
<div style="border:1px solid #f3f3ff; padding-left: 0.5em !important; background-color: #f3f3ff; border-width: 0 0 0 1.4em; clear:right; float:right;">
Notation used:
*<math>g(r)</math> is the [[Pair distribution function | pair distribution function]].
*<math>g(r)</math> is the [[Pair distribution function | pair distribution function]].
*<math>\Phi(r)</math> is the [[Intermolecular pair potential  | pair potential]] acting between pairs.
*<math>\Phi(r)</math> is the [[Intermolecular pair potential  | pair potential]] acting between pairs.
Line 9: Line 10:
*<math>\omega(r)</math> is the [[Thermal potential | thermal potential]].
*<math>\omega(r)</math> is the [[Thermal potential | thermal potential]].
*<math>f(r)</math> is the [[Mayer f-function]].
*<math>f(r)</math> is the [[Mayer f-function]].
</div>


 
The '''Ornstein-Zernike relation''' integral equation <ref>L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''17''' pp. 793- (1914)</ref> is given by:
The '''Ornstein-Zernike relation''' (OZ) integral equation is
:<math>h=h\left[c\right]</math>
:<math>h=h\left[c\right]</math>
where  <math>h[c]</math> denotes a functional of <math>c</math>. This relation is exact.
where  <math>h[c]</math> denotes a functional of <math>c</math>. This relation is exact.
Line 17: Line 18:
:<math>c=c\left[h\right]</math>
:<math>c=c\left[h\right]</math>
Note that <math>h</math> depends on <math>c</math>, and <math>c</math> depends on <math>h</math>.
Note that <math>h</math> depends on <math>c</math>, and <math>c</math> depends on <math>h</math>.
Because of this <math>h</math> must be determined [[self-consistently]].
Because of this <math>h</math> must be determined self-consistently.
This need for self-consistency is characteristic of all many-body problems.
This need for self-consistency is characteristic of all many-body problems.
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the OZ has the form (5.2.7)
(Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the Ornstein-Zernike relation  has the form (5.2.7)
:<math>h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
:<math>h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3</math>
If the system is both homogeneous and isotropic, the OZ relation becomes (Ref. 1Eq. 6)
If the system is both homogeneous and isotropic, the Ornstein-Zernike  relation becomes (Eq. 6 of Ref. 1)


:<math>\gamma (r) \equiv  h(r) - c(r) = \rho \int  h(r')~c(|r - r'|) dr'</math>
:<math>\gamma ({\mathbf r}) \equiv  h({\mathbf r}) - c({\mathbf r}) = \rho \int  h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}</math>


In words, this equation (Hansen and McDonald, section 5.2 p. 107)
In words, this equation (Hansen and McDonald, section 5.2 p. 107)
``...describes the fact that the ''total'' correlation between particles 1 and 2, represented by <math>h(1,2)</math>,  
:"...describes the fact that the ''total'' correlation between particles 1 and 2, represented by <math>h(1,2)</math>, is due in part to the ''direct'' correlation between 1 and 2, represented by <math>c(1,2)</math>, but also to the ''indirect'' correlation, <math>\gamma (r)</math>, propagated via increasingly large numbers of intermediate particles."
is due in part to the ''direct'' correlation between 1 and 2, represented by <math>c(1,2)</math>, but also to the ''indirect'' correlation,
<math>\gamma (r)</math>, propagated via increasingly large numbers of intermediate particles."


Notice that this equation is basically a convolution, ''i.e.''
Notice that this equation is basically a convolution, ''i.e.''
Line 37: Line 36:
(here truncated at the fourth iteration):
(here truncated at the fourth iteration):


:<math>h(r) = c(r)  + \rho \int c(|r - r'|)  c(r')  dr'
+ \rho^2  \int \int  c(|r - r'|)  c(|r' - r''|)  c(r'')  dr''dr' 
+ \rho^3 \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(r''')  dr'''dr''dr'
+ \rho^4 \int \int\int\int  c(|r - r'|) c(|r' - r''|) c(|r'' - r'''|) c(|r''' - r''''|) h(r'''')  dr'''' dr'''dr''dr'</math>


''etc.''
:<math>h({\mathbf r}) = c({\mathbf r})  + \rho \int c(|{\mathbf r} - {\mathbf r'}|)  c({\mathbf r'})  {\rm d}{\mathbf r'}</math>
Diagrammatically this expression can be written as  (Ref. 2):
 
:::::<math>+ \rho^2  \iint  c(|{\mathbf r} - {\mathbf r'}|)  c(|{\mathbf r'} - {\mathbf r''}|)  c({\mathbf r''})  {\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::<math>+ \rho^3 \iiint  c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c({\mathbf r'''})  {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::<math>+ \rho^4 \iiiint  c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c(|{\mathbf r'''} - {\mathbf r''''}|) h({\mathbf r''''})  {\rm d}{\mathbf r''''} {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}</math>
 
:::::''etc.''
 
Diagrammatically this expression can be written as <ref>[http://dx.doi.org/10.1103/PhysRevA.45.816 James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A '''45''' pp. 816-824 (1992)]</ref>:


:[[Image:oz_diag.png]]
:[[Image:oz_diag.png]]
Line 49: Line 53:
where the bold lines connecting root points denote <math>c</math> functions, the blobs denote <math>h</math> functions.
where the bold lines connecting root points denote <math>c</math> functions, the blobs denote <math>h</math> functions.
An arrow pointing from left to right indicates an uphill path from one root
An arrow pointing from left to right indicates an uphill path from one root
point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing
point to another. An `uphill path' is a sequence of [[Mayer f-function |Mayer bonds]] passing through increasing
particle labels.
particle labels.
The OZ relation can be derived by performing a functional differentiation  
The Ornstein-Zernike relation can be derived by performing a functional differentiation  
of the grand canonical distribution function (HM check this).
of the [[Grand canonical ensemble |grand canonical]] distribution function.
==OZ equation in Fourier space==
==Ornstein-Zernike relation in Fourier space==
The OZ equation may be written in Fourier space as (Eq. 5 in Ref. 3):
The Ornstein-Zernike equation may be written in [[Fourier analysis |Fourier space]] as (<ref>[http://dx.doi.org/10.1063/1.470724      Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics '''103''' pp. 2625-2633 (1995)]</ref> Eq. 5):


:<math>\hat{\gamma} = (I - \rho \hat{c})^{-1} \hat{c} \rho  \hat{c}</math>
:<math>\hat{\gamma} = (\mathbf{I} - \rho \mathbf{\hat{c}})^{-1}   \mathbf{\hat{c}} \rho  \mathbf{\hat{c}}</math>


The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly
The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly
Line 64: Line 68:




:<math>\gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(r) dk</math>
:<math>\gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(k) dk</math>


Note:
Note:


:<math>\hat{h}(0) = \int h(r) dr</math>
:<math>\hat{h}(0) = \int h(r) {\rm d}{\mathbf r}</math>




:<math>\hat{c}(0) = \int c(r) dr</math>
:<math>\hat{c}(0) = \int c(r) {\rm d}{\mathbf r}</math>


==References==
==References==
#L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. '''17''' pp. 793- (1914)
<references/>
#[http://dx.doi.org/10.1103/PhysRevA.45.816  James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A '''45''' pp. 816 - 824 (1992)]
 
#[http://dx.doi.org/10.1063/1.470724      Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics '''103''' pp. 2625-2633 (1995)]
'''Related reading'''
#Hansen and MacDonald "Theory of Simple Liquids"
*Jean-Pierre Hansen and I.R. McDonald "Theory of Simple Liquids", Academic Press (2006) (Third Edition) ISBN 0-12-370535-5 &sect; 3.5
*[http://doi.org/10.1063/1.4972020 Yan He, Stuart A. Rice, and Xinliang Xu "Analytic solution of the Ornstein-Zernike relation for inhomogeneous liquids", Journal of Chemical Physics '''145''' 234508 (2016)]
 


[[Category: Integral equations]]
[[Category: Integral equations]]

Latest revision as of 14:17, 21 December 2016

Notation used:

  • is the pair distribution function.
  • is the pair potential acting between pairs.
  • is the total correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)} is the direct correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)} is the indirect (or series or chain) correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(r_{12})} is the cavity correlation function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(r)} is the bridge function.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega(r)} is the thermal potential.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(r)} is the Mayer f-function.

The Ornstein-Zernike relation integral equation [1] is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h=h\left[c\right]}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h[c]} denotes a functional of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} . This relation is exact. This is complemented by the closure relation

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=c\left[h\right]}

Note that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} depends on Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} depends on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} . Because of this Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} must be determined self-consistently. This need for self-consistency is characteristic of all many-body problems. (Hansen and McDonald, section 5.2 p. 106) For a system in an external field, the Ornstein-Zernike relation has the form (5.2.7)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2) = c(1,2) + \int \rho^{(1)}(3) c(1,3)h(3,2) d3}

If the system is both homogeneous and isotropic, the Ornstein-Zernike relation becomes (Eq. 6 of Ref. 1)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma ({\mathbf r}) \equiv h({\mathbf r}) - c({\mathbf r}) = \rho \int h({\mathbf r'})~c(|{\mathbf r} - {\mathbf r'}|) {\rm d}{\mathbf r'}}

In words, this equation (Hansen and McDonald, section 5.2 p. 107)

"...describes the fact that the total correlation between particles 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(1,2)} , is due in part to the direct correlation between 1 and 2, represented by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c(1,2)} , but also to the indirect correlation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r)} , propagated via increasingly large numbers of intermediate particles."

Notice that this equation is basically a convolution, i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h \equiv c + \rho h\otimes c }

(Note: the convolution operation written here as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \otimes} is more frequently written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle *} ) This can be seen by expanding the integral in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(r)} (here truncated at the fourth iteration):


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h({\mathbf r}) = c({\mathbf r}) + \rho \int c(|{\mathbf r} - {\mathbf r'}|) c({\mathbf r'}) {\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^2 \iint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c({\mathbf r''}) {\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^3 \iiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c({\mathbf r'''}) {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle + \rho^4 \iiiint c(|{\mathbf r} - {\mathbf r'}|) c(|{\mathbf r'} - {\mathbf r''}|) c(|{\mathbf r''} - {\mathbf r'''}|) c(|{\mathbf r'''} - {\mathbf r''''}|) h({\mathbf r''''}) {\rm d}{\mathbf r''''} {\rm d}{\mathbf r'''}{\rm d}{\mathbf r''}{\rm d}{\mathbf r'}}
etc.

Diagrammatically this expression can be written as [2]:

where the bold lines connecting root points denote Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle c} functions, the blobs denote Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} functions. An arrow pointing from left to right indicates an uphill path from one root point to another. An `uphill path' is a sequence of Mayer bonds passing through increasing particle labels. The Ornstein-Zernike relation can be derived by performing a functional differentiation of the grand canonical distribution function.

Ornstein-Zernike relation in Fourier space[edit]

The Ornstein-Zernike equation may be written in Fourier space as ([3] Eq. 5):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} = (\mathbf{I} - \rho \mathbf{\hat{c}})^{-1} \mathbf{\hat{c}} \rho \mathbf{\hat{c}}}

The carets denote the three-dimensional Fourier transformed quantities which reduce explicitly to:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\gamma} (k) = \frac{4 \pi}{k} \int_0^\infty r~\sin (kr) \gamma(r) dr}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma (r) = \frac{1}{2 \pi^2 r} \int_0^\infty k~\sin (kr) \hat{\gamma}(k) dk}

Note:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{c}(0) = \int c(r) {\rm d}{\mathbf r}}

References[edit]

  1. L. S. Ornstein and F. Zernike "Accidental deviations of density and opalescence at the critical point of a single substance", Koninklijke Nederlandse Akademie van Wetenschappen Amsterdam Proc. Sec. Sci. 17 pp. 793- (1914)
  2. James A. Given "Liquid-state methods for random media: Random sequential adsorption", Physical Review A 45 pp. 816-824 (1992)
  3. Der-Ming Duh and A. D. J. Haymet "Integral equation theory for uncharged liquids: The Lennard-Jones fluid and the bridge function", Journal of Chemical Physics 103 pp. 2625-2633 (1995)

Related reading