Flexible molecules: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs)  No edit summary | |||
| (15 intermediate revisions by 4 users not shown) | |||
| Line 2: | Line 2: | ||
| == Bond distances ==   | == Bond distances ==   | ||
| Atoms linked by a chemical bond (stretching) using the [[harmonic spring approximation]]: | |||
| <math>  | :<math> \Phi_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2 </math> | ||
| However, this internal coordinates are very often kept constrained (fixed bond distances) | |||
| == Bond Angles  == | == Bond Angles  == | ||
| Line 11: | Line 12: | ||
| Bond sequence:  1-2-3: | Bond sequence:  1-2-3: | ||
| Bond Angle: <math> \theta </math> | Bond Angle: <math> \left. \theta \right. </math> | ||
| <math> \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|}   | :<math> \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|}   | ||
| </math> | </math> | ||
| Two typical forms are used to model the ''bending'' potential: | Two typical forms are used to model the ''bending'' potential: | ||
| <math> | :<math> | ||
| \Phi_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2   | |||
| </math> | </math> | ||
| <math> | :<math> | ||
| \Phi_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2   | |||
| </math> | </math> | ||
| Line 29: | Line 30: | ||
| Bond sequence: 1-2-3-4 | Bond sequence: 1-2-3-4 | ||
| Dihedral angle (<math> \left. \phi \right. </math>) definition: | |||
| Dihedral angle (<math> \phi </math>) definition: | |||
| Consider the following vectors: | Consider the following vectors: | ||
| Line 37: | Line 37: | ||
| * <math> \vec{b}  \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} }   | * <math> \vec{b}  \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} }   | ||
| { |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } </math>;    | { |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } </math>;  normalized component of <math> \vec{r}_{21} </math> ortogonal to <math> \vec{a} </math>   | ||
| * <math> \vec{e}_{34}  \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} } | * <math> \vec{e}_{34}  \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} } | ||
| { |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } </math> | { |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } </math>; normalized component of <math> \vec{r}_{34} </math> ortogonal to <math> \vec{a} </math> | ||
| *<math> \vec{c} = \vec{a} \times \vec{b} </math> | *<math> \vec{c} = \vec{a} \times \vec{b} </math> | ||
| *<math> e_{34} = (\cos \phi) \vec{a} + (sin \phi) \vec{c} </math> | *<math> e_{34} = (\cos \phi) \vec{a} + (\sin \phi) \vec{c} </math> | ||
| For molecules with internal rotation degrees of freedom (e.g. ''n''-alkanes), a ''torsional'' potential is | For molecules with internal rotation degrees of freedom (e.g. ''n''-alkanes), a ''torsional'' potential is | ||
| usually modelled as: | usually modelled as: | ||
| *<math> | |||
| \Phi_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i | |||
| </math> | </math> | ||
| or | or | ||
| * <math> | |||
| \Phi_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right) | |||
| </math> | </math> | ||
| == Van der Waals intramolecular interactions == | |||
| For pairs of atoms (or sites) which are separated by a certain number of chemical bonds: | |||
| Pair interactions similar to the typical intermolecular potentials are frequently | |||
| used (e.g. [[Lennard-Jones model|Lennard-Jones]] potentials) | |||
| [[category: force fields]] | |||
| [[category: models]] | |||
Latest revision as of 15:32, 30 July 2007
Modelling of internal degrees of freedom, usual techniques:
Bond distances[edit]
Atoms linked by a chemical bond (stretching) using the harmonic spring approximation:
However, this internal coordinates are very often kept constrained (fixed bond distances)
Bond Angles[edit]
Bond sequence: 1-2-3:
Bond Angle:
Two typical forms are used to model the bending potential:
Dihedral angles. Internal Rotation[edit]
Bond sequence: 1-2-3-4 Dihedral angle () definition:
Consider the following vectors:
- ; Unit vector in the direction of the 2-3 bond
- ; normalized component of ortogonal to
- ; normalized component of ortogonal to
For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:
or
Van der Waals intramolecular interactions[edit]
For pairs of atoms (or sites) which are separated by a certain number of chemical bonds:
Pair interactions similar to the typical intermolecular potentials are frequently used (e.g. Lennard-Jones potentials)