Flexible molecules: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 2: Line 2:


== Bond distances ==  
== Bond distances ==  
* Atoms linked by a chemical bond (stretching):
Atoms linked by a chemical bond (stretching) using the [[harmonic spring approximation]]:


<math> V_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2 </math>
:<math> \Phi_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2 </math>


However, this internal coordinates are very often kept constrained (fixed bond distances)
However, this internal coordinates are very often kept constrained (fixed bond distances)
Line 14: Line 14:
Bond Angle: <math> \left. \theta \right. </math>
Bond Angle: <math> \left. \theta \right. </math>


<math> \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|}  
:<math> \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|}  
</math>
</math>


Two typical forms are used to model the ''bending'' potential:
Two typical forms are used to model the ''bending'' potential:


<math>
:<math>
V_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2  
\Phi_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2  
</math>
</math>


<math>
:<math>
V_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2  
\Phi_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2  
</math>
</math>


Line 50: Line 50:


*<math>
*<math>
V_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i
\Phi_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i
</math>
</math>


Line 56: Line 56:


* <math>
* <math>
V_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)
\Phi_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)
</math>
</math>


== Van der Waals intramolecular interactions ==
== Van der Waals intramolecular interactions ==


For pairs of atoms (or sites) which are separated by a certain number of chemical bonds,
For pairs of atoms (or sites) which are separated by a certain number of chemical bonds:
pair interaction models similar to the typical intermolecular potentials are frequently
 
used (e.g. [[Lennard-Jones]] potentials)
Pair interactions similar to the typical intermolecular potentials are frequently
used (e.g. [[Lennard-Jones model|Lennard-Jones]] potentials)
[[category: force fields]]
[[category: models]]

Latest revision as of 15:32, 30 July 2007

Modelling of internal degrees of freedom, usual techniques:

Bond distances[edit]

Atoms linked by a chemical bond (stretching) using the harmonic spring approximation:

However, this internal coordinates are very often kept constrained (fixed bond distances)

Bond Angles[edit]

Bond sequence: 1-2-3:

Bond Angle:

Two typical forms are used to model the bending potential:

Dihedral angles. Internal Rotation[edit]

Bond sequence: 1-2-3-4 Dihedral angle () definition:

Consider the following vectors:

  • ; Unit vector in the direction of the 2-3 bond
  • ; normalized component of ortogonal to
  • ; normalized component of ortogonal to

For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:

or

Van der Waals intramolecular interactions[edit]

For pairs of atoms (or sites) which are separated by a certain number of chemical bonds:

Pair interactions similar to the typical intermolecular potentials are frequently used (e.g. Lennard-Jones potentials)