Newtons laws: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
m (Added a publication)
 
Line 21: Line 21:
====In Latin====
====In Latin====
:''Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.'' Principia Mathematica.
:''Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.'' Principia Mathematica.
;Interesting reading
*[http://dx.doi.org/10.1103/PhysRevX.5.011035 A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and H. Löwen "Statistical Mechanics where Newton’s Third Law is Broken", Physical Review X '''5''' 011035 (2015)]
[[category: classical mechanics]]
[[category: classical mechanics]]

Latest revision as of 16:40, 29 March 2016

Newton's first law of motion[edit]

If no external force acts on a particle, then it is possible to select a set of reference frames, called inertial reference frames, observed from which the particle moves without any change in velocity.

In Latin[edit]

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare. Principia Mathematica.

Newton's second law of motion[edit]

Where is the force, is the mass and is the acceleration. This law has been found to be true for accelerations as small as (Ref. 2)

In Latin[edit]

Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur. Principia Mathematica.

Interesting reading[edit]

References[edit]

Newton's third law of motion[edit]

Whenever A exerts a force on B, B simultaneously exerts a force on A with the same magnitude in the opposite direction.

In Latin[edit]

Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi. Principia Mathematica.
Interesting reading