Newtons laws: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) m (Added a publication) |
||
Line 21: | Line 21: | ||
====In Latin==== | ====In Latin==== | ||
:''Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.'' Principia Mathematica. | :''Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi.'' Principia Mathematica. | ||
;Interesting reading | |||
*[http://dx.doi.org/10.1103/PhysRevX.5.011035 A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and H. Löwen "Statistical Mechanics where Newton’s Third Law is Broken", Physical Review X '''5''' 011035 (2015)] | |||
[[category: classical mechanics]] | [[category: classical mechanics]] |
Latest revision as of 16:40, 29 March 2016
Newton's first law of motion[edit]
If no external force acts on a particle, then it is possible to select a set of reference frames, called inertial reference frames, observed from which the particle moves without any change in velocity.
In Latin[edit]
- Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare. Principia Mathematica.
Newton's second law of motion[edit]
Where is the force, is the mass and is the acceleration. This law has been found to be true for accelerations as small as (Ref. 2)
In Latin[edit]
- Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur. Principia Mathematica.
Interesting reading[edit]
- Frank Wilczek "Whence the Force of F = ma? I: Culture Shock", Physics Today October pp. 11-12 (2004)
- Frank Wilczek "Whence the Force of F = ma? II: Rationalizations", Physics Today December pp. 10-11 (2004)
- Frank Wilczek "Whence the Force of F = ma? III: Cultural Diversity", Physics Today July pp. 10-11 (2005)
References[edit]
- Adrian Cho "No Twisting Out of Newton's Law", ScienceNOW Daily News 13 April 2007
- J. H. Gundlach, S. Schlamminger, C. D. Spitzer, K.-Y. Choi, B. A. Woodahl, J. J. Coy, and E. Fischbach "Laboratory test of Newton's second law for small accelerations", Physical Review Letters 98 150801 (2007)
Newton's third law of motion[edit]
Whenever A exerts a force on B, B simultaneously exerts a force on A with the same magnitude in the opposite direction.
In Latin[edit]
- Lex III: Actioni contrariam semper et æqualem esse reactionem: sive corporum duorum actiones in se mutuo semper esse æquales et in partes contrarias dirigi. Principia Mathematica.
- Interesting reading