Stockmayer potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎References: Added a recent publication)
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point dipole. Thus the Stockmayer potential becomes:
The '''Stockmayer potential''' consists of the [[Lennard-Jones model]] with an embedded point [[Dipole moment |dipole]]. Thus the Stockmayer potential becomes (Eq. 1 <ref>[http://dx.doi.org/10.1063/1.1750922 W. H. Stockmayer "Second Virial Coefficients of Polar Gases", Journal of Chemical Physics '''9''' pp. 398-402 (1941)]</ref>):


:<math> \Phi(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}-  \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu^2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math>
:<math> \Phi_{12}(r, \theta_1, \theta_2, \phi) = 4 \epsilon \left[ \left(\frac{\sigma}{r} \right)^{12}-  \left( \frac{\sigma}{r}\right)^6 \right] - \frac{\mu_1 \mu_2}{4\pi \epsilon_0 r^3} \left(2 \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \cos \phi\right) </math>


where:
where:
* <math> \Phi(r) </math> is the [[intermolecular pair potential]] between two particles at a distance r;
* <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>
* <math> \sigma </math> is the  diameter (length), i.e. the value of <math>r</math> at <math> \Phi(r)=0</math> ;
* <math> \Phi(r) </math> is the [[intermolecular pair potential]] between two particles at a distance <math>r</math>
* <math> \epsilon </math> : well depth (energy)
* <math> \sigma </math> is the  diameter (length), i.e. the value of <math>r</math> at <math> \Phi(r)=0</math>  
* <math> \epsilon </math> represents the well depth (energy)
* <math> \epsilon_0 </math> is the permittivity of the vacuum
* <math> \epsilon_0 </math> is the permittivity of the vacuum
* <math>\mu</math> is the dipole moment
* <math>\mu</math> is the dipole moment
* <math>\theta_1,\theta_2 </math> is the inclination of the two dipole axes with respect to the intermolecular axis.
* <math>\theta_1</math> and <math>\theta_2 </math> are the angles associated with the inclination of the two dipole axes with respect to the intermolecular axis.
* <math>\phi</math> is the azimuth angle between the two dipole moments
* <math>\phi</math> is the azimuth angle between the two dipole moments
If one defines the reduced dipole moment, <math>\mu^*</math>  
If one defines a reduced dipole moment, <math>\mu^*</math>, such that:


:<math>\mu^* := \sqrt{\frac{\mu^2}{4\pi\epsilon_0\epsilon \sigma^3}}</math>
:<math>\mu^* := \sqrt{\frac{\mu^2}{4\pi\epsilon_0\epsilon \sigma^3}}</math>
Line 20: Line 21:
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.
==Critical properties==
==Critical properties==
In the range <math>0 \leq \mu^* \leq 2.45</math> (Ref. 1)
In the range <math>0 \leq \mu^* \leq 2.45</math> <ref>[http://dx.doi.org/10.1080/00268979400100294 M.E. Van Leeuwen "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics '''82''' pp. 383-392 (1994)]</ref>:
:<math>T_c^* = 1.313 + 0.2999\mu^{*2} -0.2837 \ln(\mu^{*2} +1)</math>
:<math>T_c^* = 1.313 + 0.2999\mu^{*2} -0.2837 \ln(\mu^{*2} +1)</math>
:<math>\rho_c^* = 0.3009 - 0.00785\mu^{*2} - 0.00198\mu^{*4}</math>
:<math>\rho_c^* = 0.3009 - 0.00785\mu^{*2} - 0.00198\mu^{*4}</math>
:<math>P_c^* = 0.127 + 0.0023\mu^{*2}</math>
:<math>P_c^* = 0.127 + 0.0023\mu^{*2}</math>
==Bridge function==
A [[bridge function]] for use in [[integral equations]] has been calculated by Puibasset and Belloni <ref>[http://dx.doi.org/10.1063/1.4703899 Joël Puibasset and Luc Belloni "Bridge function for the dipolar fluid from simulation", Journal of Chemical Physics '''136''' 154503 (2012)]</ref>.
==References==
<references/>
'''Related reading'''
*[http://www.nrcresearchpress.com/doi/abs/10.1139/v77-418 Frank M. Mourits, Frans H. A. Rummens "A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods", Canadian Journal of Chemistry '''55''' pp. 3007-3020 (1977)]
*[http://dx.doi.org/10.1016/0378-3812(94)80018-9 M. E. van Leeuwen "Derivation of Stockmayer potential parameters for polar fluids", Fluid Phase Equilibria '''99''' pp. 1-18 (1994)]
*[http://dx.doi.org/10.1016/j.fluid.2007.02.009 Osvaldo H. Scalise "On the phase equilibrium Stockmayer fluids", Fluid Phase Equilibria '''253''' pp. 171–175 (2007)]
*[http://dx.doi.org/10.1103/PhysRevE.75.011506  Reinhard Hentschke, Jörg Bartke, and Florian Pesth "Equilibrium polymerization and gas-liquid critical behavior in the Stockmayer fluid", Physical Review E '''75''' 011506 (2007)]
*[http://dx.doi.org/10.1063/1.4821455  Jun Wang , Pankaj A. Apte , James R. Morris  and Xiao Cheng Zeng "Freezing point and solid-liquid interfacial free energy of Stockmayer dipolar fluids: A molecular dynamics simulation study", Journal of Chemical Physics '''139''' 114705 (2013)]


==References==
#[http://dx.doi.org/10.1080/00268979400100294 M. E. Van Leeuwe "Deviation from corresponding-states behaviour for polar fluids", Molecular Physics '''82''' pp. 383-392 (1994)]
{{numeric}}
{{numeric}}
[[category: models]]
[[category: models]]

Latest revision as of 16:39, 6 November 2013

The Stockmayer potential consists of the Lennard-Jones model with an embedded point dipole. Thus the Stockmayer potential becomes (Eq. 1 [1]):

where:

  • is the intermolecular pair potential between two particles at a distance
  • is the diameter (length), i.e. the value of at
  • represents the well depth (energy)
  • is the permittivity of the vacuum
  • is the dipole moment
  • and are the angles associated with the inclination of the two dipole axes with respect to the intermolecular axis.
  • is the azimuth angle between the two dipole moments

If one defines a reduced dipole moment, , such that:

one can rewrite the expression as

For this reason the potential is sometimes known as the Stockmayer 12-6-3 potential.

Critical properties[edit]

In the range [2]:

Bridge function[edit]

A bridge function for use in integral equations has been calculated by Puibasset and Belloni [3].

References[edit]

Related reading

This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.