Master equation: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs) m (Started adding the master equation) | Carl McBride (talk | contribs)  m (Added equations of evolution) | ||
| (2 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| {{stub-general}} | {{stub-general}} | ||
| The '''master equation''' describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11) | The '''master equation''' describes the exact behavior of the [[velocity distribution]] for any time (Ref. 1 Eq. 3-11) | ||
| :<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math> | :<math>\partial_{t \rho_0} \left( \{ {\mathbf \upsilon} \},t \right) =  {\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) + \int_0^t G_{00}(t-t') \rho_0 \left( \{ {\upsilon} \},t' \right)  {\mathrm d}t'</math> | ||
| where | where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9) | ||
| :<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right)</math> | :<math>{\mathcal D}_0 \left(t, \rho_{ \{k'' \} } \left( \{ {\mathbf \upsilon} \},0 \right)  \right) = \frac{-1}{2\pi} \oint_c \exp (-izt) \sum_{ \{k'' \} \neq 0} {\mathcal D}^+_{0 \{k'' \}} (z) \rho_{\{k'' \}} \left( \{ {\mathbf \upsilon} \},0 \right) </math> | ||
| and the diagonal fragment is given by (Ref. 1 Eq. 3-10) | |||
| :<math>G_{00}(\tau)  = \frac{1}{2\pi i} \oint_c \exp (-iz \tau) \psi^+_{00} (z)~ {\mathrm d}z </math> | |||
| ==Equations of evolution== | |||
| The equations of evolution for the distribution function <math>\rho</math> for the diagonal fragments(Ref. 1 Eq. 3-1) | |||
| :<math>\psi_{ \{k\}\{k\}}(z) = \sum_{n=2}^\infty (-\lambda)^n \langle \{k\}  \vert \delta L \left[ \frac{1}{L_0-z} \delta L \right]^n  \vert \{k\} \rangle </math> | |||
| for the creation fragments (Ref. 1 Eq. 3-2) | |||
| :<math>\tilde{C}_{ \{k\}\{k'\}}(z) = \sum_{n=1}^\infty (-\lambda)^n \langle \{k\}  \vert  \left[ \frac{1}{L_0-z} \delta L \right]^n  \vert \{k'\} \rangle </math> | |||
| and for the destruction regions (Ref. 1 Eq. 3-3) | |||
| :<math>\mathcal{D}_{ \{k'\}\{k''\}}(z) = \sum_{n=1}^\infty (-\lambda)^n \langle \{k'\}  \vert  \left[ \delta L \frac{1}{L_0-z}  \right]^n  \vert \{k''\} \rangle </math> | |||
| ==References== | ==References== | ||
| #[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I.  | #[http://dx.doi.org/10.1016/0031-8914(61)90008-8 I. Prigogine and P. Résibois "On the kinetics of the approach to equilibrium", Physica '''27''' pp. 629-646  (1961)] | ||
| [[category: Non-equilibrium thermodynamics]] | [[category: Non-equilibrium thermodynamics]] | ||
Latest revision as of 11:07, 1 July 2008
The master equation describes the exact behavior of the velocity distribution for any time (Ref. 1 Eq. 3-11)
where the time dependent functional of the initial conditions is given by (Ref. 1 Eq. 3-9)
and the diagonal fragment is given by (Ref. 1 Eq. 3-10)
Equations of evolution[edit]
The equations of evolution for the distribution function for the diagonal fragments(Ref. 1 Eq. 3-1)
for the creation fragments (Ref. 1 Eq. 3-2)
and for the destruction regions (Ref. 1 Eq. 3-3)
