Entropy: Difference between revisions
Carl McBride (talk | contribs) m (→Statistical mechanics: Added an internal link) |
Carl McBride (talk | contribs) (Added origin of the word entropy) |
||
(20 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
:'' "Energy has to do with possibilities. Entropy has to do with the probabilities of those possibilities happening. It takes energy and performs a further epistemological step." '' '''Constantino Tsallis''' <ref>http://www.mlahanas.de/Greeks/new/Tsallis.htm</ref> | |||
'''Entropy''' was first described by [[Rudolf Julius Emanuel Clausius]] in 1865 <ref>[http://dx.doi.org/10.1002/andp.18652010702 R. Clausius "Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie", Annalen der Physik und Chemie '''125''' pp. 353-400 (1865)]</ref>. The [[statistical mechanics | statistical mechanical]] desciption is due to [[Ludwig Eduard Boltzmann]] (Ref. ?). The word entropy originated from the Greek word meaning a turning or transformation "τροπή" <ref>[https://books.google.es/books?id=8LIEAAAAYAAJ&pg=PA357 Rudolf Clausius "The Mechanical Theory of Heat: With Its Applications to the Steam-engine and to the Physical Properties of Bodies", London (1867) page 357]</ref>. | |||
'''Entropy''' was first described by [[Rudolf Julius Emanuel Clausius]] in 1865 ( | |||
==Classical thermodynamics== | ==Classical thermodynamics== | ||
In [[classical thermodynamics]] one has the | In [[classical thermodynamics]] one has the entropy, <math>S</math>, | ||
:<math>{\mathrm d} S = \frac{\delta Q_{\mathrm {reversible}}} {T} </math> | :<math>{\mathrm d} S = \frac{\delta Q_{\mathrm {reversible}}} {T} </math> | ||
where <math>Q</math> is the [[heat]] and <math>T</math> is the [[temperature]]. | where <math>Q</math> is the [[heat]] and <math>T</math> is the [[temperature]]. | ||
==Statistical mechanics== | ==Statistical mechanics== | ||
In [[statistical mechanics]] | In [[statistical mechanics]] entropy is defined by | ||
:<math>\left. S \right. = -k_B \ | :<math>\left. S \right. := -k_B \sum_{i=1}^W p_i \ln p_i</math> | ||
where <math>k_B</math> is the [[Boltzmann constant]], | where <math>k_B</math> is the [[Boltzmann constant]], <math>i</math> is the index for the [[microstate |microstates]], and <math>p_i</math> | ||
is the probability that microstate '' | is the probability that microstate ''i'' is occupied. | ||
In the [[microcanonical ensemble]] this gives: | In the [[microcanonical ensemble]] this gives: | ||
:<math>\left.S\right. = k_B \ln | :<math>\left.S\right. = k_B \ln W</math> | ||
where <math> | where <math>W</math> (sometimes written as <math>\Omega</math>) | ||
is the number of microscopic configurations that result in the observed macroscopic description of the thermodynamic system. | is the number of microscopic configurations that result in the observed macroscopic description of the thermodynamic system. | ||
This equation provides a link between [[Classical thermodynamics | classical thermodynamics]] and | This equation provides a link between [[Classical thermodynamics | classical thermodynamics]] and | ||
[[Statistical mechanics | statistical mechanics]] | [[Statistical mechanics | statistical mechanics]] | ||
==Tsallis entropy== | |||
Tsallis (or ''non-additive'') entropy <ref>[http://dx.doi.org/10.1007/BF01016429 Constantino Tsallis "Possible generalization of Boltzmann-Gibbs statistics", Journal of Statistical Physics '''52''' pp. 479-487 (1988)]</ref> is defined as (Eq. 1) | |||
:<math>S_q:= k_B \frac{1-\sum_{i=1}^W p_i^q}{q-1}</math> | |||
where <math>q</math> is the ''Tsallis index'' <ref>[http://dx.doi.org/10.1103/PhysRevE.78.021102 Filippo Caruso and Constantino Tsallis "Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics", Physical Review E '''78''' 021102 (2008)]</ref>. | |||
As <math>q \rightarrow 1 </math> one recovers the standard expression for entropy. This expression for the entropy is the cornerstone of [[non-extensive thermodynamics]]. | |||
==Arrow of time== | ==Arrow of time== | ||
Articles: | Articles: | ||
*[http://dx.doi.org/10.1119/1.1942052 T. Gold "The Arrow of Time", American Journal of Physics '''30''' pp. 403-410 (1962)] | *[http://dx.doi.org/10.1119/1.1942052 T. Gold "The Arrow of Time", American Journal of Physics '''30''' pp. 403-410 (1962)] | ||
* Joel L. Lebowitz "Boltzmann's Entropy and Time's Arrow", Physics Today '''46''' pp. 32-38 (1993) | *[http://dx.doi.org/10.1063/1.881363 Joel L. Lebowitz "Boltzmann's Entropy and Time's Arrow", Physics Today '''46''' pp. 32-38 (1993)] | ||
*[http://dx.doi.org/10.1023/A:1023715732166 Milan M. Ćirković "The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann–Schuetz Argument", Foundations of Physics '''33''' pp. 467-490 (2003)] | *[http://dx.doi.org/10.1023/A:1023715732166 Milan M. Ćirković "The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann–Schuetz Argument", Foundations of Physics '''33''' pp. 467-490 (2003)] | ||
*[http://dx.doi.org/10.1103/PhysRevE.79.061103 Noah Linden, Sandu Popescu, Anthony J. Short, and Andreas Winter "Quantum mechanical evolution towards thermal equilibrium", Physical Review E '''79''' 061103 (2009)] | |||
Books: | Books: | ||
* Steven F. Savitt (Ed.) "Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time", Cambridge University Press (1997) ISBN 0521599458 | * Steven F. Savitt (Ed.) "Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time", Cambridge University Press (1997) ISBN 0521599458 | ||
Line 35: | Line 42: | ||
==See also:== | ==See also:== | ||
*[[Entropy of a glass]] | *[[Entropy of a glass]] | ||
*[[H-theorem]] | |||
*[[Non-extensive thermodynamics]] | |||
*[[Shannon entropy]] | *[[Shannon entropy]] | ||
==References== | |||
<references/> | |||
'''Related reading''' | |||
== | |||
*[http://dx.doi.org/10.1119/1.1990592 Karl K. Darrow "The Concept of Entropy", American Journal of Physics '''12''' pp. 183-196 (1944)] | *[http://dx.doi.org/10.1119/1.1990592 Karl K. Darrow "The Concept of Entropy", American Journal of Physics '''12''' pp. 183-196 (1944)] | ||
*[http://dx.doi.org/10.1119/1.1971557 E. T. Jaynes "Gibbs vs Boltzmann Entropies", American Journal of Physics '''33''' pp. 391-398 (1965)] | *[http://dx.doi.org/10.1119/1.1971557 E. T. Jaynes "Gibbs vs Boltzmann Entropies", American Journal of Physics '''33''' pp. 391-398 (1965)] | ||
Line 45: | Line 53: | ||
*[http://www.ucl.ac.uk/~ucesjph/reality/entropy/text.html S. F. Gull "Some Misconceptions about Entropy" in Brian Buck and Vincent A. MacAulay (Eds.) "Maximum Entropy in Action", Oxford Science Publications (1991)] | *[http://www.ucl.ac.uk/~ucesjph/reality/entropy/text.html S. F. Gull "Some Misconceptions about Entropy" in Brian Buck and Vincent A. MacAulay (Eds.) "Maximum Entropy in Action", Oxford Science Publications (1991)] | ||
*[http://dx.doi.org/10.2174/1874396X00802010007 Efstathios E. Michaelides "Entropy, Order and Disorder", The Open Thermodynamics Journal '''2''' pp. (2008)] | *[http://dx.doi.org/10.2174/1874396X00802010007 Efstathios E. Michaelides "Entropy, Order and Disorder", The Open Thermodynamics Journal '''2''' pp. (2008)] | ||
*Ya. G. Sinai, "On the Concept of Entropy of a Dynamical System," Doklady Akademii Nauk SSSR '''124''' pp. 768-771 (1959) | |||
*[http://dx.doi.org/10.1063/1.1670348 William G. Hoover "Entropy for Small Classical Crystals", Journal of Chemical Physics '''49''' pp. 1981-1982 (1968)] | |||
* Arieh Ben-Naim "Entropy Demystified: The Second Law Reduced to Plain Common Sense", World Scientific (2008) ISBN 978-9812832252 | |||
* Arieh Ben-Naim "Farewell to Entropy: Statistical Thermodynamics Based on Information", World Scientific (2008) ISBN 978-981-270-707-9 | |||
* Arieh Ben-Naim "Discover Entropy and the Second Law of Thermodynamics: A Playful Way of Discovering a Law of Nature" World Scientific Publishing (2010) ISBN: 978-981-4299-75-6 | |||
* Arieh Ben-Naim "Entropy and the Second Law Interpretation and Misss-Interpretations", World Scientific Publishing (2012) ISBN 978-981-4407-55-7 | |||
* Arieh Ben-Naim "Information, Entropy, Life and the Universe: What We Know and What We Do Not Know" World Scientific Publishing (2015) ISBN 978-981-4651-66-0 | |||
* Arieh Ben-Naim "Entropy The Truth, the Whole Truth, and Nothing But the Truth", World Scientific Publishing (2016) ISBN 978-981-3147-67-6 | |||
*[http://dx.doi.org/10.1063/1.4879553 Jose M. G. Vilar and J. Miguel Rubi "System-size scaling of Boltzmann and alternate Gibbs entropies", Journal of Chemical Physics '''140''' 201101 (2014)] | |||
*[http://doi.org/10.1063/1.4972525 Misaki Ozawa and Ludovic Berthier "Does the configurational entropy of polydisperse particles exist?", Journal of Chemical Physics '''146''' 014502 (2017)] | |||
*[http://dx.doi.org/10.1080/00268976.2016.1238523 Simin Yazdi Nezhad and Ulrich K. Deiters "Estimation of the entropy of fluids with Monte Carlo computer simulation", Molecular Physics '''115''' pp. 1074-1085 (2017)] | |||
*[http://dx.doi.org/10.1063/1.4984965 Gérôme Faure, Rafael Delgado-Buscalioni, and Pep Español "The entropy of a complex molecule", Journal of Chemical Physics '''146''' 224106 (2017)] | |||
== | ==External links== | ||
*[http://www.mdpi.com/journal/entropy entropy] an international and interdisciplinary Open Access journal of entropy and information studies. | |||
*[http://dx.doi.org/10.4249/scholarpedia.3448 Joel L. Lebowitz "Time's arrow and Boltzmann's entropy", Scholarpedia, 3(4):3448 (2008)] | |||
[[category: statistical mechanics]] | |||
[[category:statistical mechanics]] | [[category: Classical thermodynamics]] | ||
[[Classical thermodynamics]] |
Latest revision as of 14:26, 17 January 2018
- "Energy has to do with possibilities. Entropy has to do with the probabilities of those possibilities happening. It takes energy and performs a further epistemological step." Constantino Tsallis [1]
Entropy was first described by Rudolf Julius Emanuel Clausius in 1865 [2]. The statistical mechanical desciption is due to Ludwig Eduard Boltzmann (Ref. ?). The word entropy originated from the Greek word meaning a turning or transformation "τροπή" [3].
Classical thermodynamics[edit]
In classical thermodynamics one has the entropy, ,
where is the heat and is the temperature.
Statistical mechanics[edit]
In statistical mechanics entropy is defined by
where is the Boltzmann constant, is the index for the microstates, and is the probability that microstate i is occupied. In the microcanonical ensemble this gives:
where (sometimes written as ) is the number of microscopic configurations that result in the observed macroscopic description of the thermodynamic system. This equation provides a link between classical thermodynamics and statistical mechanics
Tsallis entropy[edit]
Tsallis (or non-additive) entropy [4] is defined as (Eq. 1)
where is the Tsallis index [5]. As one recovers the standard expression for entropy. This expression for the entropy is the cornerstone of non-extensive thermodynamics.
Arrow of time[edit]
Articles:
- T. Gold "The Arrow of Time", American Journal of Physics 30 pp. 403-410 (1962)
- Joel L. Lebowitz "Boltzmann's Entropy and Time's Arrow", Physics Today 46 pp. 32-38 (1993)
- Milan M. Ćirković "The Thermodynamical Arrow of Time: Reinterpreting the Boltzmann–Schuetz Argument", Foundations of Physics 33 pp. 467-490 (2003)
- Noah Linden, Sandu Popescu, Anthony J. Short, and Andreas Winter "Quantum mechanical evolution towards thermal equilibrium", Physical Review E 79 061103 (2009)
Books:
- Steven F. Savitt (Ed.) "Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time", Cambridge University Press (1997) ISBN 0521599458
- Michael C. Mackey "Time's Arrow: The Origins of Thermodynamic Behavior" (1992) ISBN 0486432432
- Huw Price "Time's Arrow and Archimedes' Point New Directions for the Physics of Time" Oxford University Press (1997) ISBN 978-0-19-511798-1
See also:[edit]
References[edit]
- ↑ http://www.mlahanas.de/Greeks/new/Tsallis.htm
- ↑ R. Clausius "Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie", Annalen der Physik und Chemie 125 pp. 353-400 (1865)
- ↑ Rudolf Clausius "The Mechanical Theory of Heat: With Its Applications to the Steam-engine and to the Physical Properties of Bodies", London (1867) page 357
- ↑ Constantino Tsallis "Possible generalization of Boltzmann-Gibbs statistics", Journal of Statistical Physics 52 pp. 479-487 (1988)
- ↑ Filippo Caruso and Constantino Tsallis "Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics", Physical Review E 78 021102 (2008)
Related reading
- Karl K. Darrow "The Concept of Entropy", American Journal of Physics 12 pp. 183-196 (1944)
- E. T. Jaynes "Gibbs vs Boltzmann Entropies", American Journal of Physics 33 pp. 391-398 (1965)
- Daniel F. Styer "Insight into entropy", American Journal of Physics 86 pp. 1090-1096 (2000)
- S. F. Gull "Some Misconceptions about Entropy" in Brian Buck and Vincent A. MacAulay (Eds.) "Maximum Entropy in Action", Oxford Science Publications (1991)
- Efstathios E. Michaelides "Entropy, Order and Disorder", The Open Thermodynamics Journal 2 pp. (2008)
- Ya. G. Sinai, "On the Concept of Entropy of a Dynamical System," Doklady Akademii Nauk SSSR 124 pp. 768-771 (1959)
- William G. Hoover "Entropy for Small Classical Crystals", Journal of Chemical Physics 49 pp. 1981-1982 (1968)
- Arieh Ben-Naim "Entropy Demystified: The Second Law Reduced to Plain Common Sense", World Scientific (2008) ISBN 978-9812832252
- Arieh Ben-Naim "Farewell to Entropy: Statistical Thermodynamics Based on Information", World Scientific (2008) ISBN 978-981-270-707-9
- Arieh Ben-Naim "Discover Entropy and the Second Law of Thermodynamics: A Playful Way of Discovering a Law of Nature" World Scientific Publishing (2010) ISBN: 978-981-4299-75-6
- Arieh Ben-Naim "Entropy and the Second Law Interpretation and Misss-Interpretations", World Scientific Publishing (2012) ISBN 978-981-4407-55-7
- Arieh Ben-Naim "Information, Entropy, Life and the Universe: What We Know and What We Do Not Know" World Scientific Publishing (2015) ISBN 978-981-4651-66-0
- Arieh Ben-Naim "Entropy The Truth, the Whole Truth, and Nothing But the Truth", World Scientific Publishing (2016) ISBN 978-981-3147-67-6
- Jose M. G. Vilar and J. Miguel Rubi "System-size scaling of Boltzmann and alternate Gibbs entropies", Journal of Chemical Physics 140 201101 (2014)
- Misaki Ozawa and Ludovic Berthier "Does the configurational entropy of polydisperse particles exist?", Journal of Chemical Physics 146 014502 (2017)
- Simin Yazdi Nezhad and Ulrich K. Deiters "Estimation of the entropy of fluids with Monte Carlo computer simulation", Molecular Physics 115 pp. 1074-1085 (2017)
- Gérôme Faure, Rafael Delgado-Buscalioni, and Pep Español "The entropy of a complex molecule", Journal of Chemical Physics 146 224106 (2017)
External links[edit]
- entropy an international and interdisciplinary Open Access journal of entropy and information studies.
- Joel L. Lebowitz "Time's arrow and Boltzmann's entropy", Scholarpedia, 3(4):3448 (2008)