9-3 Lennard-Jones potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Better defined r)
m (Slight tidy + added a reference.)
 
Line 1: Line 1:
== Functional form ==
The '''9-3 Lennard-Jones potential''' is related to the [[Lennard-Jones model| Lennard-Jones potential]].
The 9-3 Lennard-Jones potential is related to the [[Lennard-Jones model| Lennard-Jones potential]].
It has the following form:
It has the following form:


: <math>
: <math>
\Phi(r) = \frac{ 3 \sqrt{3}}{ 2} \epsilon \left[ \left( \frac{\sigma}{r} \right)^9 -  
\Phi_{12}(r) = \frac{ 3 \sqrt{3}}{ 2} \epsilon \left[ \left( \frac{\sigma}{r} \right)^9 -  
\left( \frac{ \sigma }{r} \right)^3 \right].
\left( \frac{ \sigma }{r} \right)^3 \right].
</math>
</math>


where <math>\Phi(r)</math> is the [[intermolecular pair potential]].
where <math>\Phi_{12}(r)</math> is the [[intermolecular pair potential]] and <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>.
The minimum value of <math> \Phi(r) </math> is obtained at <math> r = r_{min} </math>, with
The minimum value of <math> \Phi(r) </math> is obtained at <math> r = r_{min} </math>, with
* <math>r := |\mathbf{r}_1 - \mathbf{r}_2|</math>
* <math> \Phi \left( r_{min} \right) = - \epsilon </math>,
* <math> \Phi \left( r_{min} \right) = - \epsilon </math>,
* <math> \frac{ r_{min} }{\sigma} = 3^{1/6} </math>
* <math> \frac{ r_{min} }{\sigma} = 3^{1/6} </math>
== Applications ==
== Applications ==
It is commonly used to model the interaction between the particles
It is commonly used to model the interaction between the particles
of a fluid with a flat structureless solid wall.
of a fluid with a flat structureless solid wall or ''vice versa'' (Ref. 1).
== Interaction between a solid and a fluid molecule ==
== Interaction between a solid and a fluid molecule ==
Let us consider the space divided in two regions:
Let us consider the space divided in two regions:
Line 56: Line 54:
- \frac{\sigma^3 }{ 2 x^3  } \right]
- \frac{\sigma^3 }{ 2 x^3  } \right]
</math>
</math>
 
==References==
 
#[http://dx.doi.org/10.1063/1.435080  Farid F. Abraham and Y. Singh "The structure of a hard-sphere fluid in contact with a soft repulsive wall", Journal of Chemical Physics '''67''' pp. 2384-2385 (1977)]
[[category:models]]
[[category:models]]

Latest revision as of 14:44, 24 July 2008

The 9-3 Lennard-Jones potential is related to the Lennard-Jones potential. It has the following form:

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|} . The minimum value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r) } is obtained at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = r_{min} } , with

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi \left( r_{min} \right) = - \epsilon } ,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ r_{min} }{\sigma} = 3^{1/6} }

Applications[edit]

It is commonly used to model the interaction between the particles of a fluid with a flat structureless solid wall or vice versa (Ref. 1).

Interaction between a solid and a fluid molecule[edit]

Let us consider the space divided in two regions:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x < 0 } : this region is occupied by a diffuse solid with density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho_s } composed of 12-6 Lennard-Jones atoms

with parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_s } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon_a }

Our aim is to compute the total interaction between this solid and a molecule located at a position Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_f > 0 } . Such an interaction can be computed using cylindrical coordinates.

The interaction will be:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} \left[ \frac{ \sigma^{12}} { 10 (r^2 + z^2)^5} - \frac{\sigma^6 }{ 4 (r^2 + z^2 )^{2} }\right]^{r=0}_{r=\infty} . }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_{s} \int_{-\infty}^{-x} {\textrm d z} \left[ \frac{ \sigma^{12}} { 10 z^{10} } - \frac{\sigma^6 }{ 4 z^4 } \right]; }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{W} \left( x \right) = 8 \pi \epsilon_{sf} \rho_s \left[ - \frac{ \sigma^{12}} { 90 z^{9} } + \frac{\sigma^6 }{ 12 z^3 } \right]_{z=-\infty}^{z=-x}; }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{W} \left( x \right) = \frac{4 \pi \epsilon_{sf} \rho_s \sigma^3}{3} \left[ \frac{ \sigma^{9}} { 15 x^{9} } - \frac{\sigma^3 }{ 2 x^3 } \right] }

References[edit]

  1. Farid F. Abraham and Y. Singh "The structure of a hard-sphere fluid in contact with a soft repulsive wall", Journal of Chemical Physics 67 pp. 2384-2385 (1977)