Critical points: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a reference.)
m (Reverted edits by 70.135.118.126 (talk) to last revision by Carl McBride)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Image:press_temp.png|thumb|right]]
[[Image:press_temp.png|thumb|right]]
The '''critical point''', discovered in 1822 by Charles Cagniard de la Tour <ref>Charles Cagniard de la Tour "", Annales de chimie et de physique '''21''' pp. 127- (1822)</ref>, is a point found at the end of the liquid-vapour coexistence curve (the red point shown on the [[pressure-temperature]] plot on the right). At this point the [[temperature]] is known as the ''critical temperature'' <math>(T_c)</math>
The '''critical point''', discovered in 1822 by Charles Cagniard de la Tour <ref>Charles Cagniard de la Tour "Exposé de quelques résultats obtenu par l'action combinée de la chaleur et de la compression sur certains liquides, tels que l'eau, l'alcool, l'éther sulfurique et l'essence de pétrole rectifiée", Annales de chimie et de physique '''21''' pp. 127-132 (1822)</ref><ref>[http://dx.doi.org/10.1590/S1806-11172009000200015 Bertrand Berche, Malte Henkel, and Ralph Kenna "Critical phenomena: 150 years since Cagniard de la Tour", Revista Brasileira de Ensino de Física '''31''' pp.2602.1-2602.4 (2009)] (in English [http://arxiv.org/abs/0905.1886v1 arXiv:0905.1886v1])</ref> , is a point found at the end of the liquid-vapour coexistence curve (the red point shown on the [[pressure-temperature]] plot on the right). At this point the [[temperature]] is known as the ''critical temperature'' <math>(T_c)</math>
and the [[pressure]] is known as the ''critical pressure'' <math>(P_c)</math>.
and the [[pressure]] is known as the ''critical pressure'' <math>(P_c)</math>.
For an interesting discourse on the "discovery" of the liquid-vapour critical point, the  Bakerian Lecture of [[Thomas Andrews]]
For an interesting discourse on the "discovery" of the liquid-vapour critical point, the  Bakerian Lecture of [[Thomas Andrews]]
Line 28: Line 28:
==Solid-liquid critical point==
==Solid-liquid critical point==
It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz  
It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz  
<ref>L. D. Landau and E. M. Lifshitz, "Statistical Physics" (Course of Theoretical Physics, Volume 5) 3rd Edition Part 1, Chapter XIV, Pergamon Press (1980) &sect; 83 p. 258</ref>. However, recent work using the [[Z2 potential]] suggests that this may not be the last word on the subject.
<ref>L. D. Landau and E. M. Lifshitz, "Statistical Physics" (Course of Theoretical Physics, Volume 5) 3rd Edition Part 1, Chapter XIV, Pergamon Press (1980) &sect; 83 p. 258</ref>. However, recent work using the [[Z1 and Z2 potentials |Z2 potential]] suggests that this may not be the last word on the subject.
<ref>[http://dx.doi.org/10.1063/1.3213616 Måns Elenius and Mikhail Dzugutov "Evidence for a liquid-solid critical point in a simple monatomic system", Journal of Chemical Physics 131, 104502 (2009)]</ref>.
<ref>[http://dx.doi.org/10.1063/1.3213616 Måns Elenius and Mikhail Dzugutov "Evidence for a liquid-solid critical point in a simple monatomic system", Journal of Chemical Physics 131, 104502 (2009)]</ref>.
==Tricritical points==
==Tricritical points==
*[http://dx.doi.org/10.1103/PhysRevLett.24.715  Robert B. Griffiths "Thermodynamics Near the Two-Fluid Critical Mixing Point in He<sup>3</sup> - He<sup>4</sup>", Physical Review Letters '''24'''  715-717 (1970)]
*[http://dx.doi.org/10.1103/PhysRevLett.24.715  Robert B. Griffiths "Thermodynamics Near the Two-Fluid Critical Mixing Point in He<sup>3</sup> - He<sup>4</sup>", Physical Review Letters '''24'''  715-717 (1970)]
Line 35: Line 36:
==Critical exponents==
==Critical exponents==
:''Main article: [[Critical exponents]]''
:''Main article: [[Critical exponents]]''
==Yang-Yang anomaly==
:''Main article: [[Yang-Yang anomaly]]''
==See also==
==See also==
*[[Binder cumulant]]
*[[Binder cumulant]]
Line 46: Line 49:
* [http://dx.doi.org/10.1146/annurev.pc.37.100186.001201  J. V. Sengers and  J. M. H. Levelt Sengers "Thermodynamic Behavior of Fluids Near the Critical Point", Annual Review of Physical Chemistry '''37''' pp. 189-222 (1986)]
* [http://dx.doi.org/10.1146/annurev.pc.37.100186.001201  J. V. Sengers and  J. M. H. Levelt Sengers "Thermodynamic Behavior of Fluids Near the Critical Point", Annual Review of Physical Chemistry '''37''' pp. 189-222 (1986)]
* [http://dx.doi.org/10.1103/PhysRevLett.93.015701  Kamakshi Jagannathan and Arun Yethiraj "Molecular Dynamics Simulations of a Fluid near Its Critical Point", Physical Review Letters '''93''' 015701 (2004)]
* [http://dx.doi.org/10.1103/PhysRevLett.93.015701  Kamakshi Jagannathan and Arun Yethiraj "Molecular Dynamics Simulations of a Fluid near Its Critical Point", Physical Review Letters '''93''' 015701 (2004)]
*[http://dx.doi.org/10.1080/00268976.2010.495734 Kurt Binder "Computer simulations of critical phenomena and phase behaviour of fluids", Molecular Physics '''108''' pp. 1797-1815 (2010)]
;Books
* H. Eugene Stanley "Introduction to Phase Transitions and Critical Phenomena", Oxford University Press (1971) ISBN 9780195053166
* Cyril Domb "The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena", Taylor and Francis (1996) ISBN 9780748404353
* Cyril Domb "The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena", Taylor and Francis (1996) ISBN 9780748404353
[[category: statistical mechanics]]
[[category: statistical mechanics]]
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Latest revision as of 15:32, 4 January 2012

The critical point, discovered in 1822 by Charles Cagniard de la Tour [1][2] , is a point found at the end of the liquid-vapour coexistence curve (the red point shown on the pressure-temperature plot on the right). At this point the temperature is known as the critical temperature and the pressure is known as the critical pressure . For an interesting discourse on the "discovery" of the liquid-vapour critical point, the Bakerian Lecture of Thomas Andrews makes good reading [3]. Critical points are singularities in the partition function. In the critical point vicinity (Ref. [4] Eq. 17a)

and

For a review of the critical region see the work of Michael E. Fisher [5]

"... Turning now to the question of specific heats, it has long been known that real gases exhibit a large ``anomalous" specific-heat maximum above which lies near the critical isochore and which is not expected on classical theory..."

also

"... measurements (Ref. [6] ) of for argon along the critical isochore suggest strongly that . Such a result is again inconsistent with classical theory."

Thus in the vicinity of the liquid-vapour critical point, both the isothermal compressibility and the heat capacity at constant pressure diverge to infinity.

Liquid-liquid critical point[edit]

Solid-liquid critical point[edit]

It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz [7]. However, recent work using the Z2 potential suggests that this may not be the last word on the subject. [8].

Tricritical points[edit]

Critical exponents[edit]

Main article: Critical exponents

Yang-Yang anomaly[edit]

Main article: Yang-Yang anomaly

See also[edit]

References[edit]

Related reading

Books
  • H. Eugene Stanley "Introduction to Phase Transitions and Critical Phenomena", Oxford University Press (1971) ISBN 9780195053166
  • Cyril Domb "The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena", Taylor and Francis (1996) ISBN 9780748404353