Critical points: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added an internal link)
m (→‎References: Added a recent review)
Line 49: Line 49:
* [http://dx.doi.org/10.1103/PhysRevLett.93.015701  Kamakshi Jagannathan and Arun Yethiraj "Molecular Dynamics Simulations of a Fluid near Its Critical Point", Physical Review Letters '''93''' 015701 (2004)]
* [http://dx.doi.org/10.1103/PhysRevLett.93.015701  Kamakshi Jagannathan and Arun Yethiraj "Molecular Dynamics Simulations of a Fluid near Its Critical Point", Physical Review Letters '''93''' 015701 (2004)]
* Cyril Domb "The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena", Taylor and Francis (1996) ISBN 9780748404353
* Cyril Domb "The Critical Point: A Historical Introduction To The Modern Theory Of Critical Phenomena", Taylor and Francis (1996) ISBN 9780748404353
*[http://dx.doi.org/10.1080/00268976.2010.495734 Kurt Binder "Computer simulations of critical phenomena and phase behaviour of fluids", Molecular Physics '''108''' pp. 1797-1815 (2010)]
[[category: statistical mechanics]]
[[category: statistical mechanics]]
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Revision as of 15:06, 12 August 2010

The critical point, discovered in 1822 by Charles Cagniard de la Tour [1][2] , is a point found at the end of the liquid-vapour coexistence curve (the red point shown on the pressure-temperature plot on the right). At this point the temperature is known as the critical temperature and the pressure is known as the critical pressure . For an interesting discourse on the "discovery" of the liquid-vapour critical point, the Bakerian Lecture of Thomas Andrews makes good reading [3]. Critical points are singularities in the partition function. In the critical point vicinity (Ref. [4] Eq. 17a)

and

For a review of the critical region see the work of Michael E. Fisher [5]

"... Turning now to the question of specific heats, it has long been known that real gases exhibit a large ``anomalous" specific-heat maximum above which lies near the critical isochore and which is not expected on classical theory..."

also

"... measurements (Ref. [6] ) of for argon along the critical isochore suggest strongly that . Such a result is again inconsistent with classical theory."

Thus in the vicinity of the liquid-vapour critical point, both the isothermal compressibility and the heat capacity at constant pressure diverge to infinity.

Liquid-liquid critical point

Solid-liquid critical point

It is widely held that there is no solid-liquid critical point. The reasoning behind this was given on the grounds of symmetry by Landau and Lifshitz [7]. However, recent work using the Z2 potential suggests that this may not be the last word on the subject. [8].

Tricritical points

Critical exponents

Main article: Critical exponents

Yang-Yang anomaly

Main article: Yang-Yang anomaly

See also

References

Related reading