Mie potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
m (Slight tidy)
Line 9: Line 9:
Note that when <math>n=12</math> and <math>m=6</math> this becomes the [[Lennard-Jones model]].
Note that when <math>n=12</math> and <math>m=6</math> this becomes the [[Lennard-Jones model]].
==(14,7) model==
==(14,7) model==
#[http://dx.doi.org/10.1063/1.2901164 Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics '''128''' 154514 (2008)]
<ref>[http://dx.doi.org/10.1063/1.2901164 Afshin Eskandari Nasrabad "Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids", Journal of Chemical Physics '''128''' 154514 (2008)]</ref>
#[http://dx.doi.org/10.1063/1.2953331 Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics '''129''' 024507 (2008)]
<ref>[http://dx.doi.org/10.1063/1.2953331 Afshin Eskandari Nasrabad, Nader Mansoori Oghaz, and Behzad Haghighi "Transport properties of Mie(14,7) fluids: Molecular dynamics simulation and theory", Journal of Chemical Physics '''129''' 024507 (2008)]</ref>
==Second virial coefficient==
==Second virial coefficient==
The [[second virial coefficient]] and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>.
The [[second virial coefficient]] and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>.

Revision as of 15:04, 14 April 2011

The Mie potential was proposed by Gustav Mie in 1903 [1]. It is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r) = \left( \frac{n}{n-m}\right) \left( \frac{n}{m}\right)^{m/(n-m)} \epsilon \left[ \left(\frac{\sigma}{r} \right)^{n}- \left( \frac{\sigma}{r}\right)^m \right] }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r := |\mathbf{r}_1 - \mathbf{r}_2|}
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r) } is the intermolecular pair potential between two particles at a distance r;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is the value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(r)=0}  ;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon }  : well depth (energy)

Note that when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=12} and this becomes the Lennard-Jones model.

(14,7) model

[2] [3]

Second virial coefficient

The second virial coefficient and the Vliegenthart–Lekkerkerker relation [4].

References

Related reading