Microcanonical ensemble: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 10: Line 10:
== Partition function ==  
== Partition function ==  


:<math> Q_{NVE} = \frac{1}{h^{3N} N!} \int \int d  (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E).
:<math> Q_{NVE} = \frac{1}{h^{3N} N!} \iint d  (p)^{3N} d(q)^{3N} \delta ( H(p,q) - E).
</math>
</math>



Revision as of 17:27, 11 October 2007

Ensemble variables

(One component system, 3-dimensional system, ... ):

  • : number of particles
  • : is the volume
  • : is the internal energy (kinetic + potential)

Partition function

Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Q_{NVE}={\frac {1}{h^{3N}N!}}\iint d(p)^{3N}d(q)^{3N}\delta (H(p,q)-E).}

where:

  • represents the 3N Cartesian position coordinates.
  • represents the 3N momenta.
  • represents the Hamiltonian, i.e. the total energy of the system as a function of coordinates and momenta.

Thermodynamics

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S = k_B \log Q_{NVE} \right. }

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. S \right. } is the entropy.
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. k_B \right. } is the Boltzmann constant

References

  1. D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Algorithms to Applications", Academic Press