Kern and Frenkel patchy model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Corrected Template causing markup)
m (→‎References: Added a recent publicatoin)
Line 47: Line 47:
*[http://dx.doi.org/10.1063/1.3689308 Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics '''136''' 094512 (2012)]
*[http://dx.doi.org/10.1063/1.3689308 Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics '''136''' 094512 (2012)]
*[http://dx.doi.org/10.1063/1.4722477 Emanuela Bianchi, Günther Doppelbauer, Laura Filion, Marjolein Dijkstra, and Gerhard Kahl "Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms", Journal of Chemical Physics '''136''' 214102 (2012)]
*[http://dx.doi.org/10.1063/1.4722477 Emanuela Bianchi, Günther Doppelbauer, Laura Filion, Marjolein Dijkstra, and Gerhard Kahl "Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms", Journal of Chemical Physics '''136''' 214102 (2012)]
*[http://dx.doi.org/10.1063/1.4960423  Z. Preisler, T. Vissers, F. Smallenburg and F. Sciortino "Crystals of Janus colloids at various interaction ranges", Journal of Chemical Physics '''145''' 064513 (2016)]




[[category: models]]
[[category: models]]

Revision as of 12:42, 2 September 2016

The Kern and Frenkel [1] patchy model is an amalgamation of the hard sphere model with attractive square well patches (HSSW). The potential has an angular aspect, given by (Eq. 1)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}({\mathbf r}_{ij}; \tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) =\Phi_{ij}^{ \mathrm{HSSW}}({\mathbf r}_{ij}) \cdot f(\tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j) }


where the radial component is given by the square well model (Eq. 2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}^{ \mathrm{HSSW}} \left({\mathbf r}_{ij} \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }

and the orientational component is given by (Eq. 3)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij} \left(\hat{ {\mathbf r}}_{ij}; \tilde{ {\mathbf \Omega}}_i, \tilde{ {\mathbf \Omega}}_j \right) = \left\{ \begin{array}{clc} 1 & \mathrm{if} & \left\{ \begin{array}{ccc} & (\hat{e}_\alpha\cdot\hat{r}_{ij} \leq \cos \delta) & \mathrm{for~some~patch~\alpha~on~}i \\ \mathrm{and} & (\hat{e}_\beta\cdot\hat{r}_{ji} \leq \cos \delta) & \mathrm{for~some~patch~\beta~on~}j \end{array} \right. \\ 0 & \mathrm{otherwise} & \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} is the solid angle of a patch (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \beta, ...} ) whose axis is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{e}} (see Fig. 1 of Ref. 1), forming a conical segment.

Two patches

The "two-patch" Kern and Frenkel model has been extensively studied by Sciortino and co-workers [2][3][4].

Four patches

Main article: Anisotropic particles with tetrahedral symmetry

Single-bond-per-patch-condition

If the two parameters Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} fullfil the condition

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\delta} \leq \dfrac{1}{2(1+\lambda\sigma)} }

then the patch cannot be involved in more than one bond. Enforcing this condition makes it possible to compare the simulations results with Wertheim theory [2][4]

References

Related reading