Stirling's approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
:<math>\left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k</math> | :<math>\left.\ln N!\right. = \ln 1 + \ln 2 + \ln 3 + ... + \ln N = \sum_{k=1}^N \ln k</math> | ||
Because of [Euler-MacLaurin formula] | |||
:<math>\sum_{k=1}^N \ln k=\int_1^N \ln x dx+\sum_{k=1}^p\frac{B_{2k}}{2k(2k-1)}\left(\frac{1}{n^{2k-1}}-1\right)+R</math> | |||
where ''B''<sub>1</sub> = −1/2, ''B''<sub>2</sub> = 1/6, ''B''<sub>3</sub> = 0, ''B''<sub>4</sub> = −1/30, ''B''<sub>5</sub> = 0, ''B''<sub>6</sub> = 1/42, ''B''<sub>7</sub> = 0, ''B''<sub>8</sub> = −1/30, ... are the [[Bernoulli numbers]], and ''R'' is an error term which is normally small for suitable values of ''p''. | |||
:<math>~\approx \int_1^N \ln x dx</math> | :<math>~\approx \int_1^N \ln x dx</math> |
Revision as of 14:36, 28 March 2007
James Stirling (1692-1770, Scotland)
Because of [Euler-MacLaurin formula]
where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0, B8 = −1/30, ... are the Bernoulli numbers, and R is an error term which is normally small for suitable values of p.
Thus, for large N