Uhlenbeck-Ford model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 20: Line 20:
<references/>
<references/>
;Related reading
;Related reading
*[http://dx.doi.org/10.1063/1.4967775  Rodolfo Paula Leite, Rodrigo Freitas, Rodolfo Azevedo and Maurice de Koning "The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations", Journal of Chemical Physics '''145''', 194101 (2016)]
*[http://dx.doi.org/10.1063/1.4967775  R. Paula Leite, R. Freitas, R. Azevedo and M. de Koning "The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations", Journal of Chemical Physics '''145''', 194101 (2016)]
*[https://doi.org/10.1103/PhysRevE.96.032115  Rodolfo Paula Leite, Pedro Antonio Santos-Flórez, and Maurice de Koning "Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis", Physical Review E '''96''', 032115 (2017)]
*[http://aip.scitation.org/doi/suppl/10.1063/1.4967775 R. Paula Leite, R. Freitas, R. Azevedo and M. de Koning "Supplemental Material: The Uhlenbeck-Ford model: Exact virial coefficients and application as a reference system in fluid-phase free-energy calculations", Journal of Chemical Physics '''145''', 194101 (2016)]
*[https://doi.org/10.1103/PhysRevE.96.032115  R. Paula Leite, P. A. Santos-Flórez and M. de Koning "Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis", Physical Review E '''96''', 032115 (2017)]
 
[[category: models]]
[[category: models]]

Revision as of 20:47, 11 October 2017

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.


Functional form

The Uhlenbeck-Ford model is given by :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_{UF}(r) = - \frac{p}{\beta} \ln \left(1-e^{-(r/\sigma)^2} \right)}


where

  • is a scaling factor;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \equiv (k_B T)^{-1} } is the well depth (energy);
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r \equiv |\mathbf{r}_1 - \mathbf{r}_2|} is the interparticle distance;
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma } is a length-scale parameter.



References

Related reading