Laguerre polynomials: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: Laguerre polynomials are solutions <math>L_n(x)</math> to the Laguerre differential equation with <math>\nu =0</math>. The Laguerre polynomial <math>H_n(z)</math> can be defined by the con...)
 
No edit summary
 
Line 6: Line 6:
The first four Laguerre polynomials are:
The first four Laguerre polynomials are:


<math>\left. L_0 (x) \right.=1</math>
:<math>\left. L_0 (x) \right.=1</math>




<math>\left. L_1 (x) \right.=-x +1</math>
:<math>\left. L_1 (x) \right.=-x +1</math>




<math>L_2 (x) =\frac{1}{2}(x^2 -4x +2)</math>
:<math>L_2 (x) =\frac{1}{2}(x^2 -4x +2)</math>




<math>L_3 (x) =\frac{1}{6}(-x^3 +9x^2 -18x +6)</math>
:<math>L_3 (x) =\frac{1}{6}(-x^3 +9x^2 -18x +6)</math>
 


===Generalized Laguerre function===
===Generalized Laguerre function===


<math>L_n^{\alpha}(x)= \frac{(\alpha + 1)_n}{n!} ~_1F_1(-n; \alpha + 1;x)</math>
:<math>L_n^{\alpha}(x)= \frac{(\alpha + 1)_n}{n!} ~_1F_1(-n; \alpha + 1;x)</math>


where <math>(a)_n</math> is the Pochhammer symbol
where <math>(a)_n</math> is the Pochhammer symbol

Latest revision as of 10:48, 31 May 2007

Laguerre polynomials are solutions to the Laguerre differential equation with . The Laguerre polynomial can be defined by the contour integral

The first four Laguerre polynomials are:





Generalized Laguerre function[edit]

where is the Pochhammer symbol and is a confluent hyper-geometric function.

See also[edit]