Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (New page: Used to calculate the free energy difference between two states. The path must be ''continuous'' and ''reversible''. One has a continuously variable energy function <math>U_\lambda</math>...)
 
mNo edit summary
Line 2: Line 2:
The path must be ''continuous'' and ''reversible''.
The path must be ''continuous'' and ''reversible''.
One has a  continuously variable energy function <math>U_\lambda</math> such that
One has a  continuously variable energy function <math>U_\lambda</math> such that
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math>
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>
and
<math>\lambda=1</math>, <math>U_\lambda=U</math>


<math>\Delta A = A - A_0 = \int_0^1 d\lambda  <\frac{\partial U_\lambda}{\partial \lambda}>_{\lambda}</math>
:<math>\Delta A = A - A_0 = \int_0^1 d\lambda  \langle\frac{\partial U_\lambda}{\partial \lambda}\rangle_{\lambda}</math>


 
:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>
<math>U_\lambda=(1-\lambda)U_0 + \lambda U</math>

Revision as of 11:35, 23 February 2007

Used to calculate the free energy difference between two states. The path must be continuous and reversible. One has a continuously variable energy function Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle U_{\lambda }} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_\lambda=U_0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda=1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_\lambda=U}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta A = A - A_0 = \int_0^1 d\lambda \langle\frac{\partial U_\lambda}{\partial \lambda}\rangle_{\lambda}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U}