Carnahan-Starling equation of state: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) |
||
Line 27: | Line 27: | ||
(Eq. 2.6, 2.7 and 2.8 in Ref. 2) | (Eq. 2.6, 2.7 and 2.8 in Ref. 2) | ||
Pressure (compressibility): | [[Pressure]] (compressibility): | ||
:<math>\frac{\beta | :<math>\frac{\beta p^{CS}}{\rho} = \frac{1+ \eta + \eta^2 - \eta^3}{(1-\eta)^3}</math> | ||
Configurational chemical potential: | Configurational [[chemical potential]]: | ||
:<math>\beta \overline{\mu }^{CS} = \frac{8\eta -9 \eta^2 + 3\eta^3}{(1-\eta)^3}</math> | :<math>\beta \overline{\mu }^{CS} = \frac{8\eta -9 \eta^2 + 3\eta^3}{(1-\eta)^3}</math> | ||
Isothermal compressibility: | Isothermal [[compressibility]]: | ||
:<math>\chi_T -1 = \frac{1}{kT} \left.\frac{\partial P^{CS}}{\partial \rho}\right\vert_{T} = \frac{8\eta -2 \eta^2 }{(1-\eta)^4}</math> | :<math>\chi_T -1 = \frac{1}{kT} \left.\frac{\partial P^{CS}}{\partial \rho}\right\vert_{T} = \frac{8\eta -2 \eta^2 }{(1-\eta)^4}</math> | ||
where <math>\eta</math> is the [[packing fraction]]. | where <math>\eta</math> is the [[packing fraction]]. | ||
== References == | == References == | ||
#[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics'''51''' , 635-636 (1969)] | #[http://dx.doi.org/10.1063/1.1672048 N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics'''51''' , 635-636 (1969)] |
Revision as of 10:19, 18 July 2007
The Carnahan-Starling equation of state is an approximate (but quite good) equation of state for the fluid phase of the hard sphere model in three dimensions. (Eqn. 10 in Ref 1).
where:
- is the pressure
- is the volume
- is the number of particles
- is the Boltzmann constant
- is the absolute temperature
- is the packing fraction:
- is the hard sphere diameter.
Thermodynamic expressions
From the Carnahan-Starling equation for the fluid phase the following thermodynamic expressions can be derived (Eq. 2.6, 2.7 and 2.8 in Ref. 2)
Pressure (compressibility):
Configurational chemical potential:
Isothermal compressibility:
where is the packing fraction.
References
- N. F.Carnahan and K. E.Starling,"Equation of State for Nonattracting Rigid Spheres" Journal of Chemical Physics51 , 635-636 (1969)
- Lloyd L. Lee "An accurate integral equation theory for hard spheres: Role of the zero-separation theorems in the closure relation", Journal of Chemical Physics 103 pp. 9388-9396 (1995)