Virial equation of state: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) No edit summary |
||
Line 17: | Line 17: | ||
*<math> B_k\left( T \right) </math> is called the k-th virial coefficient | *<math> B_k\left( T \right) </math> is called the k-th virial coefficient | ||
==Virial coefficients== | ==Virial coefficients== | ||
The second virial coefficient represents the initial departure from ideal-gas behavior | The [[second virial coefficient]] represents the initial departure from ideal-gas behavior | ||
<math>B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{- | :<math>B_{2}(T)= \frac{N_0}{2V} \int .... \int (1-e^{-\Phi/k_BT}) ~d\tau_1 d\tau_2</math> | ||
</math> | |||
where <math>N_0</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules | where <math>N_0</math> is [[Avogadro constant | Avogadros number]] and <math>d\tau_1</math> and <math>d\tau_2</math> are volume elements of two different molecules | ||
in configuration space. | in configuration space. | ||
One can write the third virial coefficient as | |||
:<math>B_{3}(T)= - \frac{1}{3V} \int \int \int f_{12} f_{13} f_{23} dr_1 dr_2 dr_3</math> | |||
where ''f'' is the [[Mayer f-function]]. | |||
==References== | ==References== | ||
# H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden '''71''' (1901) | # H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden '''71''' (1901) | ||
#[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state",Reports on Progress in Physics '''7''' pp. 195-229 (1940)] | #[http://dx.doi.org/10.1088/0034-4885/7/1/312 James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics '''7''' pp. 195-229 (1940)] | ||
[[category:equations of state]] | [[category:equations of state]] |
Revision as of 10:15, 12 July 2007
The virial equation of state is used to describe the behavior of diluted gases. It is usually written as an expansion of the compresiblity factor, , in terms of either the density or the pressure. Such an expansion was first introduced by Kammerlingh Onnes. In the first case:
- .
where
- is the pressure
- is the volume
- is the number of molecules
- is the (number) density
- is called the k-th virial coefficient
Virial coefficients
The second virial coefficient represents the initial departure from ideal-gas behavior
where is Avogadros number and and are volume elements of two different molecules in configuration space.
One can write the third virial coefficient as
where f is the Mayer f-function.
References
- H. Kammerlingh Onnes "", Communications from the Physical Laboratory Leiden 71 (1901)
- James A Beattie and Walter H Stockmayer "Equations of state", Reports on Progress in Physics 7 pp. 195-229 (1940)