Gay-Berne model: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | Carl McBride (talk | contribs)  No edit summary | ||
| Line 1: | Line 1: | ||
| The '''Gay-Berne''' model is used extensively in simulations of [[liquid crystals | liquid crystalline]] systems. The Gay-Berne model | The '''Gay-Berne''' model is used extensively in simulations of [[liquid crystals | liquid crystalline]] systems. The Gay-Berne model | ||
| is an anistropic form of the [[Lennard-Jones model | Lennard-Jones 12:6 potential]]. | is an anistropic form of the [[Lennard-Jones model | Lennard-Jones 12:6 potential]]. | ||
| <math>U_{ij}^{\mathrm LJ/GB} = | |||
| 4 \epsilon_0^{\mathrm LJ/GB} | |||
| [\epsilon^{\mathrm LJ/GB}]^{\mu} | |||
| ( {\mathbf {\hat u}}_j , {\mathbf {\hat r}}_{ij} ) | |||
| \times  \left[ \left( | |||
| \frac{\sigma_0^{\mathrm LJ/GB} | |||
| } | |||
| { | |||
| r_{ij} - | |||
| \sigma^{\mathrm LJ/GB} | |||
| ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) | |||
| + {\sigma_0}^{\mathrm LJ/GB} | |||
| } | |||
| \right)^{12} | |||
| - | |||
| \left( | |||
| \frac | |||
| { | |||
| \sigma_0^{\mathrm LJ/GB} | |||
| } | |||
| { | |||
| r_{ij} - | |||
| \sigma^{\mathrm LJ/GB} | |||
| ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) | |||
| + {\sigma_0}^{\mathrm LJ/GB} | |||
| } | |||
| \right)^{6} | |||
| \right], | |||
| </math> | |||
| where, in the limit of one of the particles being spherical, gives: | |||
| :<math>\sigma^{\mathrm LJ/GB} ({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) ={\sigma_0}{[1 - \chi \alpha^{-2} | |||
| {({\mathbf {\hat{r}}}_{ij} \cdot  {\mathbf {\hat{u}}}_j )}^{2}]}^{-1/2}</math> | |||
| and | |||
| :<math>\epsilon^{\mathrm LJ/GB}({\mathbf {\hat{u}}}_j, {\mathbf {\hat{r}}}_{ij} ) ={\epsilon_0}{[1 - \chi\prime  \alpha\prime^{-2} | |||
| {({\mathbf {\hat{r}}}_{ij} \cdot  {\mathbf {\hat{u}}}_j )}^{2}]}</math> | |||
| with | |||
| :<math>\frac{\chi}{\alpha^{2}}=\frac{l_{j}^{2}-d_{j}^{2}}{l_{j}^{2}+d_{i}^{2}}</math> | |||
| and | |||
| :<math>\frac{\chi \prime }{\alpha \prime^{2}}=1- {\left(\frac{\epsilon_{ee}}{\epsilon_{ss}}\right)} ^{\frac{1}{\mu}}.</math> | |||
| ==References== | ==References== | ||
| #[http://dx.doi.org/10.1063/1.441483  J. G. Gay and B. J. Berne "Modification of the overlap potential to mimic a linear site–site potential", Journal of Chemical Physics '''74''' pp. 3316-3319  (1981)] | #[http://dx.doi.org/10.1063/1.441483  J. G. Gay and B. J. Berne "Modification of the overlap potential to mimic a linear site–site potential", Journal of Chemical Physics '''74''' pp. 3316-3319  (1981)] | ||
Revision as of 11:04, 3 October 2007
The Gay-Berne model is used extensively in simulations of liquid crystalline systems. The Gay-Berne model is an anistropic form of the Lennard-Jones 12:6 potential. where, in the limit of one of the particles being spherical, gives:
and
with
and
References
- J. G. Gay and B. J. Berne "Modification of the overlap potential to mimic a linear site–site potential", Journal of Chemical Physics 74 pp. 3316-3319 (1981)
- Douglas J. Cleaver, Christopher M. Care, Michael P. Allen, and Maureen P. Neal "Extension and generalization of the Gay-Berne potential" Physical Review E 54 pp. 559 - 567 (1996)
- Enrique De Miguel "Reexamining the phase diagram of the Gay-Berne fluid", Molecular Physics 100 pp. 2449-2459 (2002)
- Julian T. Brown, Michael P. Allen, Elvira Martín del Río and Enrique de Miguel "Effects of elongation on the phase behavior of the Gay-Berne fluid", Physical Review E 57 pp. 6685 - 6699 (1998)