BOSS: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| mNo edit summary | Carl McBride (talk | contribs)  mNo edit summary | ||
| Line 1: | Line 1: | ||
| The [http://zarbi.chem.yale.edu/software.html BOSS] (Biochemical and Organic Simulation System) program is a general purpose molecular modeling system that performs molecular mechanics (MM) calculations, [[Metropolis Monte Carlo]] (MC) statistical mechanics simulations, and semiempirical AM1, PM3, and PDDG/PM3 quantum mechanics (QM) calculations. The MM calculations cover energy minimizations, normal mode analysis, and conformational searching with the [[OPLS]] force fields. | The [http://zarbi.chem.yale.edu/software.html BOSS] (Biochemical and Organic Simulation System) program is a general purpose molecular modeling system that performs molecular mechanics (MM) calculations, [[Metropolis Monte Carlo]] (MC) statistical mechanics simulations, and semiempirical AM1, PM3, and PDDG/PM3 quantum mechanics (QM) calculations. The MM calculations cover energy minimizations, normal mode analysis, and conformational searching with the [[OPLS]] force fields. | ||
| ==External links== | |||
| *[http://zarbi.chem.yale.edu/doc/boss46.pdf BOSS User Manual (PDF, 2 MB)] | |||
| ==References== | ==References== | ||
| #[http://dx.doi.org/10.1002/jcc.20297 William L. Jorgensen, Julian Tirado-Rives  "Molecular modeling of organic and biomolecular systems using BOSS and MCPRO", Journal of Computational Chemistry '''26''' pp. 1689-1700 (2005)] | #[http://dx.doi.org/10.1002/jcc.20297 William L. Jorgensen, Julian Tirado-Rives  "Molecular modeling of organic and biomolecular systems using BOSS and MCPRO", Journal of Computational Chemistry '''26''' pp. 1689-1700 (2005)] | ||
| [[Category: Materials modelling and computer simulation codes]] | [[Category: Materials modelling and computer simulation codes]] | ||
Revision as of 15:05, 6 November 2007
The BOSS (Biochemical and Organic Simulation System) program is a general purpose molecular modeling system that performs molecular mechanics (MM) calculations, Metropolis Monte Carlo (MC) statistical mechanics simulations, and semiempirical AM1, PM3, and PDDG/PM3 quantum mechanics (QM) calculations. The MM calculations cover energy minimizations, normal mode analysis, and conformational searching with the OPLS force fields.