Monte Carlo: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs) No edit summary | Carl McBride (talk | contribs)  mNo edit summary | ||
| Line 1: | Line 1: | ||
| *[[Cluster algorithms]] | |||
| *[[Configurational bias Monte Carlo]] | |||
| *[[Constant-pressure Monte Carlo]] | |||
| *[[Detailed balance]] | |||
| *[[Fragment regrowth Monte Carlo]] | |||
| *[[Gibbs-Duhem integration]] | |||
| *[[Gibbs ensemble Monte Carlo]] | |||
| *[[Glauber transition probabilities]] also known as: Barkers method | |||
| *[[Importance sampling]] | *[[Importance sampling]] | ||
| *[[ | *[[Inverse Monte Carlo]] | ||
| *[[Lattice simulations]] | |||
| *[[Markov chain]] | *[[Markov chain]] | ||
| *[[Monte Carlo  | *[[Metropolis Monte Carlo]] | ||
| *[[Monte Carlo in the grand-canonical ensemble]] | |||
| *[[Monte Carlo in the microcanonical ensemble]] | |||
| *[[Monte Carlo reptation moves]] | |||
| *[[Quantum Monte Carlo]] | |||
| *[[Random numbers]] | *[[Random numbers]] | ||
| *[[ | *[[Reverse Monte Carlo]] | ||
| *[[ | *[[Umbrella sampling]] | ||
| *[[ | *[[Wang-Landau method]] | ||
| ==Historical papers== | ==Historical papers== | ||
| *[http://links.jstor.org/sici?sici=0162-1459%28194909%2944%3A247%3C335%3ATMCM%3E2.0.CO%3B2-3 Nicholas Metropolis and S. Ulam "The Monte Carlo Method", Journal of the American Statistical Association '''44''' pp. 335-341 (1949)] | *[http://links.jstor.org/sici?sici=0162-1459%28194909%2944%3A247%3C335%3ATMCM%3E2.0.CO%3B2-3 Nicholas Metropolis and S. Ulam "The Monte Carlo Method", Journal of the American Statistical Association '''44''' pp. 335-341 (1949)] | ||
Revision as of 15:01, 18 February 2008
- Cluster algorithms
- Configurational bias Monte Carlo
- Constant-pressure Monte Carlo
- Detailed balance
- Fragment regrowth Monte Carlo
- Gibbs-Duhem integration
- Gibbs ensemble Monte Carlo
- Glauber transition probabilities also known as: Barkers method
- Importance sampling
- Inverse Monte Carlo
- Lattice simulations
- Markov chain
- Metropolis Monte Carlo
- Monte Carlo in the grand-canonical ensemble
- Monte Carlo in the microcanonical ensemble
- Monte Carlo reptation moves
- Quantum Monte Carlo
- Random numbers
- Reverse Monte Carlo
- Umbrella sampling
- Wang-Landau method