Stress: Difference between revisions
Carl McBride (talk | contribs) (New page: The '''stress''' is given by :<math>{\mathbf F} = \sigma_{ij} {\mathbf A}</math> where <math>{\mathbf F}</math> is the force, <math>{\mathbf A}</math> is the area, and <math>\sigma_{ij}...) |
m (Added a paper) |
||
| Line 13: | Line 13: | ||
where where <math>\ \sigma_{x}</math>, <math>\ \sigma_{y}</math>, and <math>\ \sigma_{z}</math> are normal stresses, and <math>\ \tau_{xy}</math>, <math>\ \tau_{xz}</math>, <math>\ \tau_{yx}</math>, <math>\ \tau_{yz}</math>, <math>\ \tau_{zx}</math>, and <math>\ \tau_{zy}</math> are shear stresess. | where where <math>\ \sigma_{x}</math>, <math>\ \sigma_{y}</math>, and <math>\ \sigma_{z}</math> are normal stresses, and <math>\ \tau_{xy}</math>, <math>\ \tau_{xz}</math>, <math>\ \tau_{yx}</math>, <math>\ \tau_{yz}</math>, <math>\ \tau_{zx}</math>, and <math>\ \tau_{zy}</math> are shear stresess. | ||
==References== | |||
<references/> | |||
'''Related reading''' | |||
*[http://dx.doi.org/10.1063/1.3245303 Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions", Journal of Chemical Physics '''131''' 154107 (2009)] | |||
[[category: classical mechanics]] | [[category: classical mechanics]] | ||
Revision as of 15:45, 20 October 2009
The stress is given by
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\mathbf {F} }=\sigma _{ij}{\mathbf {A} }}
where is the force, is the area, and is the stress tensor, given by
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \sigma _{ij}\equiv \left[{\begin{matrix}\sigma _{x}&\tau _{xy}&\tau _{xz}\\\tau _{yx}&\sigma _{y}&\tau _{yz}\\\tau _{zx}&\tau _{zy}&\sigma _{z}\\\end{matrix}}\right]}
where where , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_{y}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_{z}} are normal stresses, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xy}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{xz}} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{yz}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{zx}} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau_{zy}} are shear stresess.
References
Related reading