1-dimensional Ising model: Difference between revisions
mNo edit summary |
mNo edit summary |
||
| Line 16: | Line 16: | ||
and <math> K = J/k_B T </math> | and <math> K = J/k_B T </math> | ||
<math> Q_{N | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}}\sum_{S_{N}} e^{K S_{N-1} S_{N} } | ||
</math> | </math> | ||
Performing the sum of the possible values of <math> S_{N | Performing the sum of the possible values of <math> S_{N} </math> we get: | ||
<math> Q_{N | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-2}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K S_{N-1} ) \right] | ||
</math> | </math> | ||
Taking into account that <math> \cosh(K) = \cosh(-K) </math> | Taking into account that <math> \cosh(K) = \cosh(-K) </math> | ||
<math> Q_{N | <math> Q_{N} = \sum_{S_1} \sum_{S_2} e^{K S_1S_2} \sum_{S_3} e^{K S_2 S_3} \cdots \sum_{S_{N-1}} e^{K S_{N-2} S_{N-1}} \left[ 2 \cosh ( K ) \right] | ||
</math> | </math> | ||
Therefore: | Therefore: | ||
<math> Q_{N | <math> Q_{N} = \left( 2 \cosh K \right) Q_{N-1} </math> | ||
<math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | <math> Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N </math> | ||
Revision as of 13:03, 23 February 2007
Model: Consider a system with spins in a row.
The energy of the system will be given by
,
where each variable can be either -1 or +1.
The partition function of the system will be:
,
where represents the possible configuration of the N spins of the system,
and
Performing the sum of the possible values of we get:
Taking into account that
Therefore:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_{N} = \left( 2 \cosh K \right) Q_{N-1} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N = 2^{N} \left( \cosh K \right)^{N-1} \approx ( 2 \cosh K )^N }
The Helmholtz free energy in the thermodynamic limit will be
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = - N k_B T \log \left( 2 \cosh K \right) }