1-dimensional hard rods: Difference between revisions
m (Slight tidy up.) |
(Beautiful derivation added. Only, it relies on the Laplace transform.) |
||
| Line 64: | Line 64: | ||
where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the fraction of volume (i.e. length) occupied by the rods. | where <math> \eta \equiv \frac{ N \sigma}{L} </math>; is the fraction of volume (i.e. length) occupied by the rods. | ||
== Isobaric Ensemble: an alternative derivation == | |||
Adapted from Reference [4]. If the rods are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math> the canonical [[partition function]] can also be written: | |||
: <math> | |||
Z= | |||
\int_0^{x_1} d x_0 | |||
\int_0^{x_2} d x_1 | |||
\cdots | |||
\int_0^{L} d x_{N-1} | |||
f(x_1-x_0) | |||
f(x_2-x_1) | |||
\cdots | |||
f(L-x_{N-1}), | |||
</math> | |||
where <math>N!</math> does not appear one would have <math>N!</math> analogous expressions | |||
by permuting the label of the (distinguishable) rods. <math>f(x)</math> is the [[Boltzmann factor]] | |||
of the hard rods, which is <math>0</math> if <math>x<\sigma</math> and <math>1</math> otherwise. | |||
A variable change to the distances between rods: <math> y_k = x_k - x_{k-1} </math> results in | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_1) | |||
f(y_2) | |||
\cdots | |||
f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): | |||
</math> | |||
the distances can take any value as long as they are not below <math>\sigma</math> (as enforced | |||
by <math>f(y)</math>) and as long as they add up to <math>L</math> (as enforced by the [[Dirac_delta_distribution | Dirac delta]]). Writing the later as the inverse [[Laplace transform]] of an exponential: | |||
: <math> | |||
Z = | |||
\int_0^{\infty} d y_0 | |||
\int_0^{\infty} d y_1 | |||
\cdots | |||
\int_0^{\infty} d y_{N-1} | |||
f(y_1) | |||
f(y_2) | |||
\cdots | |||
f(y_{N-1}) | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. | |||
</math> | |||
Exchanging integrals and expanding the exponential the <math>N</math> integrals decouple: | |||
:<math> | |||
Z = | |||
\frac{1}{2\pi i } \int_{-\infty}^{\infty} ds | |||
e^{ L s } | |||
\left\{ | |||
\int_0^{\infty} d y f(y) e^{ - s y } | |||
\right\}^N. | |||
</math> | |||
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one, | |||
:<math> | |||
Z'(s)= \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N, </math> | |||
so that | |||
:<math> | |||
Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). | |||
</math> | |||
This is precisely the transformation from the configuration integral in the canonical (<math>N,T,L</math>) ensemble to the isobaric (<math>N,T,p</math>) one, if one identifies | |||
<math>s=p/k T</math>. Therefore, the [[Gibbs energy function]] is simply <math>G=-kT\log Z'(p/kT) </math>, which easily evaluated to be <math>G=kT N \log(p/kT)+p\sigma N</math>. The [[chemical potential]] is <math>\mu=G/N</math>, and by means of thermodynamic identities such as <math>\rho=\partial p/\partial \mu</math> one arrives at the same equation of state as the one given above. | |||
==References== | ==References== | ||
| Line 69: | Line 131: | ||
#[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | #[http://dx.doi.org/10.1016/0031-8914(49)90059-2 L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, '''15''' pp. 951-961 (1949)] | ||
#[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)] | #[http://dx.doi.org/10.1016/0031-8914(50)90072-3 L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, '''16''' pp. 137-143 (1950)] | ||
#J. M. Ziman ''Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems''. ISBN 0521292808. Cambridge University Press (1979) | |||
[[Category:Models]] | [[Category:Models]] | ||
[[Category:Statistical mechanics]] | [[Category:Statistical mechanics]] | ||
Revision as of 13:37, 22 February 2008
1-dimensional hard rods are basically hard spheres confined to 1 dimension (not to be confused with 3-dimensional hard rods). The model is given by the intermolecular pair potential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi (x_i,x_j) = \left\{ \begin{array}{lll} 0 & ; & |x_i-x_j| > \sigma \\ \infty &; & |x_i-x_j| < \sigma \end{array} \right. }
where Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.x_{k}\right.} is the position of the center of the k-th rod, along with an external potential; the whole length of the rod must be inside the range:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_{0}(x_i) = \left\{ \begin{array}{lll} 0 & ; & \sigma/2 < x < L - \sigma/2 \\ \infty &; & {\mathrm {elsewhere}}. \end{array} \right. }
Canonical Ensemble: Configuration Integral
The statistical mechanics of this system can be solved exactly (see Ref. 1). Consider a system of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. L \right. } defined in the range Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ 0, L \right] } . The aim is to compute the partition function of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. N \right. } hard rods of length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \sigma \right. } . Consider that the particles are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } ; taking into account the pair potential we can write the canonical partition function (configuration integral) of a system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } particles as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{\sigma/2}^{L+\sigma/2-N\sigma} d x_0 \int_{x_0+\sigma}^{L+\sigma/2-N\sigma+\sigma} d x_1 \cdots \int_{x_{i-1}+\sigma}^{L+\sigma/2-N\sigma+i \sigma} d x_i \cdots \int_{x_{N-2}+\sigma}^{L+\sigma/2-N\sigma+(N-1)\sigma} d x_{N-1}. }
Variable change: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \omega_k = x_k - \left(k+\frac{1}{2}\right) \sigma \right. } ; we get:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0 \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots \int_{\omega_{i-1}}^{L-N\sigma} d \omega_i \cdots \int_{\omega_{N-2}}^{L-N\sigma} d \omega_{N-1}. }
Therefore:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{ Z \left( N,L \right)}{N!} = \frac{ (L-N\sigma )^{N} }{N!}. }
Thermodynamics
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. A(N,L,T) = - k_B T \log Q \right. }
In the thermodynamic limit (i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \rightarrow \infty; L \rightarrow \infty} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{N}{L} } , remaining finite):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N,L,T \right) = N k_B T \left[ \log \left( \frac{ N \Lambda} { L - N \sigma }\right) - 1 \right]. }
Equation of state
Using the thermodynamic relations, the pressure (linear tension in this case) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p \right. } can be written as:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p = - \left( \frac{ \partial A}{\partial L} \right)_{N,T} = \frac{ N k_B T}{L - N \sigma}; }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{p L}{N k_B T} = \frac{1}{ 1 - \eta}, }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta \equiv \frac{ N \sigma}{L} } ; is the fraction of volume (i.e. length) occupied by the rods.
Isobaric Ensemble: an alternative derivation
Adapted from Reference [4]. If the rods are ordered according to their label: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 < x_1 < x_2 < \cdots < x_{N-1} } the canonical partition function can also be written:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z= \int_0^{x_1} d x_0 \int_0^{x_2} d x_1 \cdots \int_0^{L} d x_{N-1} f(x_1-x_0) f(x_2-x_1) \cdots f(L-x_{N-1}), }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} does not appear one would have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N!} analogous expressions by permuting the label of the (distinguishable) rods. is the Boltzmann factor of the hard rods, which is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<\sigma} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} otherwise.
A variable change to the distances between rods: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_k = x_k - x_{k-1} } results in
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_1) f(y_2) \cdots f(y_{N-1}) \delta \left( \sum_{i=0}^{N-1} y_i-L \right): }
the distances can take any value as long as they are not below (as enforced by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(y)} ) and as long as they add up to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} (as enforced by the Dirac delta). Writing the later as the inverse Laplace transform of an exponential:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \int_0^{\infty} d y_0 \int_0^{\infty} d y_1 \cdots \int_0^{\infty} d y_{N-1} f(y_1) f(y_2) \cdots f(y_{N-1}) \frac{1}{2\pi i } \int_{-\infty}^{\infty} ds \exp \left[ - s \left(\sum_{i=0}^{N-1} y_i-L \right)\right]. }
Exchanging integrals and expanding the exponential the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} integrals decouple:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{1}{2\pi i } \int_{-\infty}^{\infty} ds e^{ L s } \left\{ \int_0^{\infty} d y f(y) e^{ - s y } \right\}^N. }
We may proceed to invert the Laplace transform (e.g. by means of the residues theorem), but this is not needed: we see our configuration integral is the inverse Laplace transform of another one,
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle Z'(s)=\left\{\int _{0}^{\infty }dyf(y)e^{-sy}\right\}^{N},}
so that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z'(s) = \int_0^{\infty} ds e^{ L s } Z(L). }
This is precisely the transformation from the configuration integral in the canonical (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,L} ) ensemble to the isobaric (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N,T,p} ) one, if one identifies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=p/k T} . Therefore, the Gibbs energy function is simply , which easily evaluated to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G=kT N \log(p/kT)+p\sigma N} . The chemical potential is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu=G/N} , and by means of thermodynamic identities such as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho=\partial p/\partial \mu} one arrives at the same equation of state as the one given above.
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)
- J. M. Ziman Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems. ISBN 0521292808. Cambridge University Press (1979)