Legendre polynomials: Difference between revisions
Jump to navigation
Jump to search
m (Rodrigues) |
m (orthogonality definitions) |
||
| Line 8: | Line 8: | ||
:<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | ||
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.: | |||
:<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math> for <math> m \ne n </math> | |||
The first seven Legendre polynomials are: | The first seven Legendre polynomials are: | ||
Revision as of 17:52, 20 June 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics) are solutions of the Legendre differential equation. The Legendre polynomial, Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{n}(z)} can be defined by the contour integral
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{n}(z)={\frac {1}{2\pi i}}\oint (1-2tz+t^{2})^{1/2}~t^{-n-1}{\rm {d}}t}
Legendre polynomials can also be defined using Rodrigues formula as:
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
- for
The first seven Legendre polynomials are:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.P_{0}(x)\right.=1}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle P_{2}(x)={\frac {1}{2}}(3x^{2}-1)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_4 (x) =\frac{1}{8}(35x^4 - 30x^2 +3)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_5 (x) =\frac{1}{8}(63x^5 - 70x^3 + 15x)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_6 (x) =\frac{1}{16}(231x^6 -315x^4 + 105x^2 -5)}
"shifted" Legendre polynomials (which obey the orthogonality relationship):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_0 (x) =1}
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\overline {P}}_{1}(x)=2x-1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_2 (x) =6x^2 -6x +1}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{P}_3 (x) =20x^3 - 30x^2 +12x -1}
Powers in terms of Legendre polynomials:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. x \right.= P_1 (x)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2= \frac{1}{3}[P_0 (x) + 2P_2(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3= \frac{1}{5}[3P_1 (x) + 2P_3(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^4= \frac{1}{35}[7P_0 (x) + 20P_2(x)+ 8P_4(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^5= \frac{1}{63}[27P_1 (x) + 28P_3(x)+ 8P_5(x)]}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^6= \frac{1}{231}[33P_0 (x) + 110P_2(x)+ 72P_4(x)+ 16P_6(x)]}