|  |  | 
| Line 5: | Line 5: | 
|  | :<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> |  | :<math>P_n (z) = \frac{1}{2 \pi i} \oint ( 1-2tz + t^2)^{1/2}~t^{-n-1} {\rm d}t</math> | 
|  | 
 |  | 
 | 
|  | '''Legendre polynomials''' can also be defined using '''Rodrigues formula''' as: |  | '''Legendre polynomials''' can also be defined (Ref 1) using '''Rodrigues formula''' as: | 
|  | 
 |  | 
 | 
|  | :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> |  | :<math> P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n </math> | 
| Line 12: | Line 12: | 
|  | 
 |  | 
 | 
|  | :<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math>  for <math> m \ne n </math> |  | :<math> \int_{-1}^{1} P_n(x) P_m(x) d x = 0, </math>  for <math> m \ne n </math> | 
|  |  |  | 
|  |  | whereas | 
|  |  |  | 
|  |  | :<math>\int_{-1}^{1} P_n(x) P_n(x) d x = \frac{2}{2n+1} </math>  | 
|  | 
 |  | 
 | 
|  | The first seven  Legendre polynomials are: |  | The first seven  Legendre polynomials are: | 
		Revision as of 17:58, 20 June 2008
Legendre polynomials (also known as Legendre functions of the first kind, Legendre coefficients, or zonal harmonics)
are solutions of the Legendre differential equation.
The Legendre polynomial,  can be defined by the contour integral
 can be defined by the contour integral
 
Legendre polynomials can also be defined (Ref 1) using Rodrigues formula as:
 
Legendre polynomials form an orthogonal system in the range [-1:1], i.e.:
 for for 
whereas
 
The first seven  Legendre polynomials are:
 
 
 
 
 
 
 
"shifted" Legendre polynomials (which obey the orthogonality relationship
in the range [0:1]):
 
 
 
 
Powers in terms of Legendre polynomials:
 
![{\displaystyle x^{2}={\frac {1}{3}}[P_{0}(x)+2P_{2}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/685bc6005f1f71112eeab78e10c0c63633df1c8f) 
![{\displaystyle x^{3}={\frac {1}{5}}[3P_{1}(x)+2P_{3}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f95e83961b601f0a2b99d603e01a354f4897a919) 
![{\displaystyle x^{4}={\frac {1}{35}}[7P_{0}(x)+20P_{2}(x)+8P_{4}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c7cc35ab8fd4a4db04d6578858127d33eb56170) 
![{\displaystyle x^{5}={\frac {1}{63}}[27P_{1}(x)+28P_{3}(x)+8P_{5}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d52e1477750ad3d0c7e672dea0ffe46771c7e074) 
![{\displaystyle x^{6}={\frac {1}{231}}[33P_{0}(x)+110P_{2}(x)+72P_{4}(x)+16P_{6}(x)]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/99acb8dfaa1450eba1cfd4b575e1982776f818a7) 
See also