Isothermal-isobaric ensemble: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
| Line 18: | Line 18: | ||
*<math> \left( R^* \right)^{3N} </math> represent the reduced position coordinates of the particles; i.e. <math> \int d ( R^*)^{3N} = 1 </math> | *<math> \left( R^* \right)^{3N} </math> represent the reduced position coordinates of the particles; i.e. <math> \int d ( R^*)^{3N} = 1 </math> | ||
*<math> \left. U \right. </math> is the potential energy, which is function of the coordinates (or of the volume and the reduced coordinates) | *<math> \left. U \right. </math> is the potential energy, which is a function of the coordinates (or of the volume and the reduced coordinates) | ||
Revision as of 10:22, 26 February 2007
Variables:
- N (Number of particles)
- p (Pressure)
- T (Temperature)
- V (Volume)
The classical partition function, for a one-component atomic system in 3-dimensional space, is given by
where
- ;
- is the de Broglie wavelength
- represent the reduced position coordinates of the particles; i.e.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. U \right. } is the potential energy, which is a function of the coordinates (or of the volume and the reduced coordinates)
References
- D. Frenkel and B. Smit, "Understanding Molecular Simulation: From Alogrithms to Applications", Academic Press