Ergodic hypothesis: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎See also: Added mixing systems to list.)
m (Added a recent publication)
 
Line 4: Line 4:


A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if
A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if
the ''metrical transitivity'' of general [[Hamiltonian]] systems holds true.
the ''metrical transitivity'' of general [[Hamiltonian]] systems holds true. Recent experiments have demonstrated the hypothesis <ref>[http://dx.doi.org/10.1002/anie.201105388  Florian Feil, Sergej Naumov, Jens Michaelis, Rustem Valiullin, Dirk Enke, Jörg Kärger, and Christoph Bräuchle "Single-Particle and Ensemble Diffusivities—Test of Ergodicity", Angewandte Chemie International Edition Early View (2011)]</ref>.
==See also==
==See also==
*[[Fermi-Pasta-Ulam experiment]]
*[[Fermi-Pasta-Ulam experiment]]
*[[Markov chain]]
*[[Markov chain]]
*[[Mixing systems]]
*[[Mixing systems]]
==References==
<references/>
;Related reading
*[http://www.pnas.org/cgi/reprint/17/12/656 George D. Birkhoff, "Proof of the Ergodic Theorem", PNAS '''17''' pp.  656-660 (1931)]
*[http://www.pnas.org/cgi/reprint/18/1/70 J. V. Neumann "Proof of the Quasi-ergodic Hypothesis", PNAS '''18''' pp. 70-82 (1932)]
*[http://www.pnas.org/cgi/reprint/18/3/263 J. V. Neumann "Physical Applications of the Ergodic Hypothesis", PNAS '''18''' pp. 263-266 (1932)]
*[http://www.pnas.org/cgi/reprint/18/3/279 G. D. Birkhoff and B. O. Koopman "Recent Contributions to the Ergodic Theory", PNAS '''18''' pp. 279-282 (1932)]
*Ya. G. Sinai "On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics", Doklady Akademii Nauk SSSR  '''153''' pp. 1261–1264 (1963) (English version: Soviet Math. Doklady '''4''' pp. 1818-1822 (1963))
*[http://dx.doi.org/10.1070/RM1970v025n02ABEH003794 Ya G Sinai "Dynamical systems with elastic reflections", Russian Mathematical Surveys '''25''' pp. 137-189 (1970)]
*[http://library.lanl.gov/cgi-bin/getfile?15-18.pdf Adrian Patrascioiu "The Ergodic-Hypothesis, A Complicated Problem in Mathematics and Physics", Los Alamos Science, '''15''' pp. 263- (1987)]
*[http://dx.doi.org/10.1007/BF00384333 Jan von Plato "Boltzmann's ergodic hypothesis", Archive for History of Exact Sciences '''42''' pp. 71-89 (1991)]
* Domokos Ssász "Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?", Studia Scientiarum Mathematicarum Hungarica '''31''' pp. 299-322 (1996) [http://iml.univ-mrs.fr/~lafont/rencontres/esi098.pdf (reprint)]


==References==
#[http://www.pnas.org/cgi/reprint/17/12/656 George D. Birkhoff, "Proof of the Ergodic Theorem", PNAS '''17''' pp.  656-660 (1931)]
#[http://www.pnas.org/cgi/reprint/18/1/70 J. V. Neumann "Proof of the Quasi-ergodic Hypothesis", PNAS '''18''' pp. 70-82 (1932)]
#[http://www.pnas.org/cgi/reprint/18/3/263 J. V. Neumann "Physical Applications of the Ergodic Hypothesis", PNAS '''18''' pp. 263-266 (1932)]
#[http://www.pnas.org/cgi/reprint/18/3/279 G. D. Birkhoff and B. O. Koopman "Recent Contributions to the Ergodic Theory", PNAS '''18''' pp. 279-282 (1932)]
#Ya. G. Sinai "On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics", Doklady Akademii Nauk SSSR  '''153''' pp. 1261–1264 (1963) (English version: Soviet Math. Doklady '''4''' pp. 1818-1822 (1963))
#[http://dx.doi.org/10.1070/RM1970v025n02ABEH003794 Ya G Sinai "Dynamical systems with elastic reflections", Russian Mathematical Surveys '''25''' pp. 137-189 (1970)]
#[http://library.lanl.gov/cgi-bin/getfile?15-18.pdf Adrian Patrascioiu "The Ergodic-Hypothesis, A Complicated Problem in Mathematics and Physics", Los Alamos Science, '''15''' pp. 263- (1987)]
#[http://dx.doi.org/10.1007/BF00384333 Jan von Plato "Boltzmann's ergodic hypothesis", Archive for History of Exact Sciences '''42''' pp. 71-89 (1991)]
# Domokos Ssász "Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?", Studia Scientiarum Mathematicarum Hungarica '''31''' pp. 299-322 (1996) [http://iml.univ-mrs.fr/~lafont/rencontres/esi098.pdf (reprint)]
[[category: Computer simulation techniques]]
[[category: Computer simulation techniques]]

Latest revision as of 12:01, 21 October 2011

The Ergodic hypothesis essentially states that an ensemble average (i.e. an instance of a Monte Carlo simulation) of an observable, is equivalent to the time average, of an observable (i.e. molecular dynamics). i.e.

A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if the metrical transitivity of general Hamiltonian systems holds true. Recent experiments have demonstrated the hypothesis [1].

See also[edit]

References[edit]

Related reading