Ergodic hypothesis: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→See also: Added mixing systems to list.) |
Carl McBride (talk | contribs) m (Added a recent publication) |
||
Line 4: | Line 4: | ||
A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if | A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if | ||
the ''metrical transitivity'' of general [[Hamiltonian]] systems holds true. | the ''metrical transitivity'' of general [[Hamiltonian]] systems holds true. Recent experiments have demonstrated the hypothesis <ref>[http://dx.doi.org/10.1002/anie.201105388 Florian Feil, Sergej Naumov, Jens Michaelis, Rustem Valiullin, Dirk Enke, Jörg Kärger, and Christoph Bräuchle "Single-Particle and Ensemble Diffusivities—Test of Ergodicity", Angewandte Chemie International Edition Early View (2011)]</ref>. | ||
==See also== | ==See also== | ||
*[[Fermi-Pasta-Ulam experiment]] | *[[Fermi-Pasta-Ulam experiment]] | ||
*[[Markov chain]] | *[[Markov chain]] | ||
*[[Mixing systems]] | *[[Mixing systems]] | ||
==References== | |||
<references/> | |||
;Related reading | |||
*[http://www.pnas.org/cgi/reprint/17/12/656 George D. Birkhoff, "Proof of the Ergodic Theorem", PNAS '''17''' pp. 656-660 (1931)] | |||
*[http://www.pnas.org/cgi/reprint/18/1/70 J. V. Neumann "Proof of the Quasi-ergodic Hypothesis", PNAS '''18''' pp. 70-82 (1932)] | |||
*[http://www.pnas.org/cgi/reprint/18/3/263 J. V. Neumann "Physical Applications of the Ergodic Hypothesis", PNAS '''18''' pp. 263-266 (1932)] | |||
*[http://www.pnas.org/cgi/reprint/18/3/279 G. D. Birkhoff and B. O. Koopman "Recent Contributions to the Ergodic Theory", PNAS '''18''' pp. 279-282 (1932)] | |||
*Ya. G. Sinai "On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics", Doklady Akademii Nauk SSSR '''153''' pp. 1261–1264 (1963) (English version: Soviet Math. Doklady '''4''' pp. 1818-1822 (1963)) | |||
*[http://dx.doi.org/10.1070/RM1970v025n02ABEH003794 Ya G Sinai "Dynamical systems with elastic reflections", Russian Mathematical Surveys '''25''' pp. 137-189 (1970)] | |||
*[http://library.lanl.gov/cgi-bin/getfile?15-18.pdf Adrian Patrascioiu "The Ergodic-Hypothesis, A Complicated Problem in Mathematics and Physics", Los Alamos Science, '''15''' pp. 263- (1987)] | |||
*[http://dx.doi.org/10.1007/BF00384333 Jan von Plato "Boltzmann's ergodic hypothesis", Archive for History of Exact Sciences '''42''' pp. 71-89 (1991)] | |||
* Domokos Ssász "Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?", Studia Scientiarum Mathematicarum Hungarica '''31''' pp. 299-322 (1996) [http://iml.univ-mrs.fr/~lafont/rencontres/esi098.pdf (reprint)] | |||
[[category: Computer simulation techniques]] | [[category: Computer simulation techniques]] |
Latest revision as of 12:01, 21 October 2011
The Ergodic hypothesis essentially states that an ensemble average (i.e. an instance of a Monte Carlo simulation) of an observable, is equivalent to the time average, of an observable (i.e. molecular dynamics). i.e.
A restatement of the ergodic hypothesis is to say that all allowed states are equally probable. This holds true if the metrical transitivity of general Hamiltonian systems holds true. Recent experiments have demonstrated the hypothesis [1].
See also[edit]
References[edit]
- Related reading
- George D. Birkhoff, "Proof of the Ergodic Theorem", PNAS 17 pp. 656-660 (1931)
- J. V. Neumann "Proof of the Quasi-ergodic Hypothesis", PNAS 18 pp. 70-82 (1932)
- J. V. Neumann "Physical Applications of the Ergodic Hypothesis", PNAS 18 pp. 263-266 (1932)
- G. D. Birkhoff and B. O. Koopman "Recent Contributions to the Ergodic Theory", PNAS 18 pp. 279-282 (1932)
- Ya. G. Sinai "On the Foundation of the Ergodic Hypothesis for a Dynamical System of Statistical Mechanics", Doklady Akademii Nauk SSSR 153 pp. 1261–1264 (1963) (English version: Soviet Math. Doklady 4 pp. 1818-1822 (1963))
- Ya G Sinai "Dynamical systems with elastic reflections", Russian Mathematical Surveys 25 pp. 137-189 (1970)
- Adrian Patrascioiu "The Ergodic-Hypothesis, A Complicated Problem in Mathematics and Physics", Los Alamos Science, 15 pp. 263- (1987)
- Jan von Plato "Boltzmann's ergodic hypothesis", Archive for History of Exact Sciences 42 pp. 71-89 (1991)
- Domokos Ssász "Boltzmann's Ergodic Hypothesis, a Conjecture for Centuries?", Studia Scientiarum Mathematicarum Hungarica 31 pp. 299-322 (1996) (reprint)