Argon: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added radial distribution function section)
m (Removed duplicate reference.)
Line 1: Line 1:
[[Image:Lennard-Jones.png|thumb| The Lennard-Jones model for argon.]]
[[Image:Lennard-Jones.png|thumb| The Lennard-Jones model for argon.]]
'''Argon''' has a mass of 39.948 [[atomic mass units | umas]]. Sadus and Prausnitz have shown that three-body repulsion makes a significant contribution to [[Idealised models#Three-body potentials|three-body interactions]] in the liquid phase (Ref. 5) (for use of the [[Axilrod-Teller interaction]] see Refs. 6 and 7). However, the [[Lennard-Jones model]] has been frequently used due to its simplicity.
'''Argon''' has a mass of 39.948 [[atomic mass units | umas]]. Sadus and Prausnitz have shown that three-body repulsion makes a significant contribution to [[Idealised models#Three-body potentials|three-body interactions]] in the liquid phase (Ref. 4) (for use of the [[Axilrod-Teller interaction]] see Refs. 5 and 6). However, the [[Lennard-Jones model]] has been frequently used due to its simplicity.
==Lennard-Jones parameters==
==Lennard-Jones parameters==
The [[Lennard-Jones model |Lennard-Jones]] parameters for liquid argon are listed in the following table:
The [[Lennard-Jones model |Lennard-Jones]] parameters for liquid argon are listed in the following table:
Line 7: Line 7:
| Authors || <math>\epsilon/k_B</math> (K) || <math>\sigma</math>  (nm)|| Reference
| Authors || <math>\epsilon/k_B</math> (K) || <math>\sigma</math>  (nm)|| Reference
|-  
|-  
| Rowley, Nicholson and Parsonage || 119.8  || 0.3405  || Ref. 8
| Rowley, Nicholson and Parsonage || 119.8  || 0.3405  || Ref. 7
|-  
|-  
|Barker, Fisher and Watts  ||142.095  ||  0.33605  || Ref. 9
|Barker, Fisher and Watts  ||142.095  ||  0.33605  || Ref. 8
|-  
|-  
| White  || 125.7  ||  0.3345    || Ref. 10 parameter set #4
| White  || 125.7  ||  0.3345    || Ref. 9 parameter set #4
|}
|}
==Radial distribution function==
==Radial distribution function==
Line 19: Line 19:
#[http://dx.doi.org/10.1080/00268976400100611 H. C. Longuet-Higgins and  B. Widom "A rigid sphere model for the melting of argon", Molecular Physics '''8''' pp. 549-556 (1964)]
#[http://dx.doi.org/10.1080/00268976400100611 H. C. Longuet-Higgins and  B. Widom "A rigid sphere model for the melting of argon", Molecular Physics '''8''' pp. 549-556 (1964)]
#[http://dx.doi.org/10.1080/00268976800100721 D. Henderson and J. A. Barker "On the solidification of argon", Molecular Physics '''14''' pp. 587-589 (1968)]
#[http://dx.doi.org/10.1080/00268976800100721 D. Henderson and J. A. Barker "On the solidification of argon", Molecular Physics '''14''' pp. 587-589 (1968)]
#[http://dx.doi.org/10.1080/00268977100101821 J. A. Barker, R. A. Fisher and R. O. Watts "Liquid argon: Monte Carlo and molecular dynamics calculations", Molecular Physics '''21''' pp. 657-673 (1971)]
#[http://dx.doi.org/10.1103/PhysRevA.5.2238  F. Lado "Numerical Calculation of the Density Autocorrelation Function for Liquid Argon", Physical Review A '''5''' pp. 2238-2244 (1972)]
#[http://dx.doi.org/10.1103/PhysRevA.5.2238  F. Lado "Numerical Calculation of the Density Autocorrelation Function for Liquid Argon", Physical Review A '''5''' pp. 2238-2244 (1972)]
#[http://dx.doi.org/10.1063/1.471172 Richard J. Sadus and J. M. Prausnitz "Three-body interactions in fluids from molecular simulation: Vapor–liquid phase coexistence of argon", Journal of Chemical Physics '''104''' pp. 4784-4787 (1996)]
#[http://dx.doi.org/10.1063/1.471172 Richard J. Sadus and J. M. Prausnitz "Three-body interactions in fluids from molecular simulation: Vapor–liquid phase coexistence of argon", Journal of Chemical Physics '''104''' pp. 4784-4787 (1996)]

Revision as of 17:23, 5 August 2008

The Lennard-Jones model for argon.

Argon has a mass of 39.948 umas. Sadus and Prausnitz have shown that three-body repulsion makes a significant contribution to three-body interactions in the liquid phase (Ref. 4) (for use of the Axilrod-Teller interaction see Refs. 5 and 6). However, the Lennard-Jones model has been frequently used due to its simplicity.

Lennard-Jones parameters

The Lennard-Jones parameters for liquid argon are listed in the following table:

Authors (K) (nm) Reference
Rowley, Nicholson and Parsonage 119.8 0.3405 Ref. 7
Barker, Fisher and Watts 142.095 0.33605 Ref. 8
White 125.7 0.3345 Ref. 9 parameter set #4

Radial distribution function

Radial distribution function

  1. J. L. Yarnell, M. J. Katz, R. G. Wenzel and S. H. Koenig "Structure Factor and Radial Distribution Function for Liquid Argon at 85°K", Physical Review A 7 pp. 2130-2144 (1973)

References

  1. H. C. Longuet-Higgins and B. Widom "A rigid sphere model for the melting of argon", Molecular Physics 8 pp. 549-556 (1964)
  2. D. Henderson and J. A. Barker "On the solidification of argon", Molecular Physics 14 pp. 587-589 (1968)
  3. F. Lado "Numerical Calculation of the Density Autocorrelation Function for Liquid Argon", Physical Review A 5 pp. 2238-2244 (1972)
  4. Richard J. Sadus and J. M. Prausnitz "Three-body interactions in fluids from molecular simulation: Vapor–liquid phase coexistence of argon", Journal of Chemical Physics 104 pp. 4784-4787 (1996)
  5. Phil Attard "Pair-hypernetted-chain closure for three-body potentials: Results for argon with the Axilrod-Teller triple-dipole potential", Physical Review A 45 pp. 3659-3669 (1992)
  6. J. A. Anta, E. Lomba and M. Lombardero "Influence of three-body forces on the gas-liquid coexistence of simple fluids: The phase equilibrium of argon", Physical Review E 55 pp. 2707-2712 (1997)
  7. L. A. Rowley, D. Nicholson and N. G. Parsonage "Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon", Journal of Computational Physics 17 pp. 401-414 (1975)
  8. J. A. Barker, R. A. Fisher and R. O. Watts "Liquid argon: Monte carlo and molecular dynamics calculations", Molecular Physics 21 pp. 657-673 (1971)
  9. John A. White "Lennard-Jones as a model for argon and test of extended renormalization group calculations", Journal of Chemical Physics 111 pp. 9352-9356 (1999)
This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.