1-dimensional hard rods: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| Carl McBride (talk | contribs) m (→References) | |||
| Line 26: | Line 26: | ||
| Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;   | Consider that the particles are ordered according to their label: <math> x_0 < x_1 < x_2 < \cdots < x_{N-1} </math>;   | ||
| taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as: | :taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of <math> N </math> particles as: | ||
| : <math> | : <math> | ||
| Line 37: | Line 37: | ||
| Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get: | Variable change: <math> \left. \omega_k = x_k - (k+\frac{1}{2}) \sigma \right. </math> ; we get: | ||
| <math> | |||
| \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0   | \frac{ Z \left( N,L \right)}{N!} = \int_{0}^{L-N\sigma} d \omega_0   | ||
| \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots   | \int_{\omega_0}^{L-N\sigma} d \omega_1 \cdots   | ||
| Line 52: | Line 52: | ||
| Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}. | Q(N,L) = \frac{ (V-N)^N}{\Lambda^N N!}. | ||
| </math> | </math> | ||
| == Thermodynamics == | |||
| [[Helmholz energy function]] | |||
| : <math> \left. A(N,L,T) = - k_B T \log Q \right. </math> | |||
| In the thermodynamic limit (i.e. <math> N \rightarrow \infty; L \rightarrow \infty</math> with <math> \rho = N/L </math> remaining finite: | |||
| ==References== | ==References== | ||
Revision as of 11:47, 27 February 2007
Hard Rods, 1-dimensional system with hard sphere interactions.
The statistical mechanics of this system can be solved exactly (see Ref. 1).
Canonical Ensemble: Configuration Integral
This part could require further improvements
Consider a system of length defined in the range .
Our aim is to compute the partition function of a system of hard rods of length .
Model:
- External Potential; the whole length of the rod must be inside the range:
- Pair Potential:
where is the position of the center of the k-th rod.
Consider that the particles are ordered according to their label: ;
- taking into account the pair potential we can write the canonical parttion function (configuration integral) of a system of particles as:
Variable change: ; we get:
Therefore:
Thermodynamics
In the thermodynamic limit (i.e. with remaining finite:
References
- Lewi Tonks "The Complete Equation of State of One, Two and Three-Dimensional Gases of Hard Elastic Spheres", Physical Review 50 pp. 955- (1936)
- L. van Hove "Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction", Physica, 15 pp. 951-961 (1949)
- L. van Hove, "Sur L'intégrale de Configuration Pour Les Systèmes De Particules À Une Dimension", Physica, 16 pp. 137-143 (1950)